101 research outputs found

    Human difference in the genomic era: Facilitating a socially responsible dialogue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of human genetic variation has been advanced by research such as genome-wide association studies, which aim to identify variants associated with common, complex diseases and traits. Significant strides have already been made in gleaning information on susceptibility, treatment, and prevention of a number of disorders. However, as genetic researchers continue to uncover underlying differences between individuals, there is growing concern that observed population-level differences will be inappropriately generalized as inherent to particular racial or ethnic groups and potentially perpetuate negative stereotypes.</p> <p>Discussion</p> <p>We caution that imprecision of language when conveying research conclusions, compounded by the potential distortion of findings by the media, can lead to the stigmatization of racial and ethnic groups.</p> <p>Summary</p> <p>It is essential that the scientific community and with those reporting and disseminating research findings continue to foster a socially responsible dialogue about genetic variation and human difference.</p

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiovascular diseases and their associated risk factors remain the main cause of mortality in western societies. In order to assess the prevalence of cardiovascular risk factors (CVRFs) in the Caucasian population of Lausanne, Switzerland, we conducted a population-based study (Colaus Study). A secondary aim of the CoLaus study will be to determine new genetic determinants associated with CVRFs.</p> <p>Methods</p> <p>Single-center, cross-sectional study including a random sample of 6,188 extensively phenotyped Caucasian subjects (3,251 women and 2,937 men) aged 35 to 75 years living in Lausanne, and genotyped using the 500 K Affymetrix chip technology.</p> <p>Results</p> <p>Obesity (body mass index ≥ 30 kg/m<sup>2</sup>), smoking, hypertension (blood pressure ≥ 140/90 mmHg and/or treatment), dyslipidemia (high LDL-cholesterol and/or low HDL-cholesterol and/or high triglyceride levels) and diabetes (fasting plasma glucose ≥ 7 mmol/l and/or treatment) were present in 947 (15.7%), 1673 (27.0%), 2268 (36.7%), 2113 (34.2%) and 407 (6.6%) of the participants, respectively, and the prevalence was higher in men than in women. In both genders, the prevalence of obesity, hypertension and diabetes increased with age.</p> <p>Conclusion</p> <p>The prevalence of major CVRFs is high in the Lausanne population in particular in men. We anticipate that given its size, the depth of the phenotypic analysis and the availability of dense genome-wide genetic data, the CoLaus Study will be a unique resource to investigate not only the epidemiology of isolated, or aggregated CVRFs like the metabolic syndrome, but can also serve as a discovery set, as well as replication set, to identify novel genes associated with these conditions.</p

    The utility and predictive value of combinations of low penetrance genes for screening and risk prediction of colorectal cancer

    Get PDF
    Despite the fact that colorectal cancer (CRC) is a highly treatable form of cancer if detected early, a very low proportion of the eligible population undergoes screening for this form of cancer. Integrating a genomic screening profile as a component of existing screening programs for CRC could potentially improve the effectiveness of population screening by allowing the assignment of individuals to different types and intensities of screening and also by potentially increasing the uptake of existing screening programs. We evaluated the utility and predictive value of genomic profiling as applied to CRC, and as a potential component of a population-based cancer screening program. We generated simulated data representing a typical North American population including a variety of genetic profiles, with a range of relative risks and prevalences for individual risk genes. We then used these data to estimate parameters characterizing the predictive value of a logistic regression model built on genetic markers for CRC. Meta-analyses of genetic associations with CRC were used in building science to inform the simulation work, and to select genetic variants to include in logistic regression model-building using data from the ARCTIC study in Ontario, which included 1,200 CRC cases and a similar number of cancer-free population-based controls. Our simulations demonstrate that for reasonable assumptions involving modest relative risks for individual genetic variants, that substantial predictive power can be achieved when risk variants are common (e.g., prevalence > 20%) and data for enough risk variants are available (e.g., ~140–160). Pilot work in population data shows modest, but statistically significant predictive utility for a small collection of risk variants, smaller in effect than age and gender alone in predicting an individual’s CRC risk. Further genotyping and many more samples will be required, and indeed the discovery of many more risk loci associated with CRC before the question of the potential utility of germline genomic profiling can be definitively answered

    Cigarette smoking and risk of gestational diabetes: a systematic review of observational studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gestational diabetes is a prevalent disease associated with adverse outcomes of pregnancy. Smoking as been associated with glucose intolerance during pregnancy in some but not all studies. Therefore, we aimed to systematically review all epidemiological evidence to examine the association between cigarette smoking during pregnancy and risk of developing gestational diabetes mellitus.</p> <p>Methods</p> <p>We conducted a systematic review of articles published up to 2007, using PubMed, Embase, LILACS e CINAHL to identify the articles. Because this review focuses on studies of smoking during pregnancy, we excluded studies evaluating smoking outside pregnancy. Two investigators independently abstracted information on participant's characteristics, assessment of exposure and outcome, and estimates for the association under study. We evaluated the studies for publication bias and performed heterogeneity analyses. We also assessed the effect of each study individually through sensitivity analysis.</p> <p>Results</p> <p>We found and critically reviewed 32 studies, of which 12 met the criteria for inclusion in the review. Most of the studies provided only unadjusted measurements. Combining the results of the individual studies, we obtained a crude odds ratio of 1.03 (99% CI 0.85–1.25). Only 4 studies presented adjusted measurements of association, and no association was found when these alone were analyzed (OR 0.95; 99% CI 0.85–1.07). Subgroup analysis could not be done due to small sample size.</p> <p>Conclusion</p> <p>The number of studies is small, with major heterogeneity in research design and findings. Taken together, current data do not support an association between cigarette smoking during pregnancy and the risk of gestational diabetes.</p

    Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use

    Get PDF
    BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS: We analyzed similar to 250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.Peer reviewe

    Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci

    Get PDF
    Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations withP <5 x 10(-8)in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P <5 x 10(-8)) in the discovery samples. Ten novel SNVs, including rs12616219 nearTMEM182, were followed-up and five of them (rs462779 inREV3L, rs12780116 inCNNM2, rs1190736 inGPR101, rs11539157 inPJA1, and rs12616219 nearTMEM182) replicated at a Bonferroni significance threshold (P <4.5 x 10(-3)) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, inCCDC141and two low-frequency SNVs inCEP350andHDGFRP2. Functional follow-up implied that decreased expression ofREV3Lmay lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.Peer reviewe
    corecore