22 research outputs found

    End to end simulator for the WIVERN W-band Doppler conically scanning spaceborne radar

    Get PDF
    The WIVERN (WInd VElocity Radar Nephoscope) mission, soon entering in Phase-0 of the ESA Earth Explorer program, promises to complement Doppler wind lidar by globally observing, for the first time, vertical profiles of winds in cloudy areas. This work describes an end to end simulator of the WIVERN conically scanning 94 GHz Doppler radar, the only payload of the mission. Specific features of the simulator are: the conically scanning geometry; the inclusion of cross-polarization effects and of the simulation of a radiometric mode; the applicability to global cloud model outputs via an orbital model; the incorporation of a mispointing model accounting for thermo-elastic distortions, microvibrations, startrackers uncertainties, etc.; the inclusion of the surface clutter. Some of the simulator capabilities are showcased for a case study involving a full rotational scan of the instrument. The simulator represents a very useful tool for studying the performances of the WIVERN concept and possible trade-offs for the different configurations (e.g. different antenna sizes, pulse lengths, antenna patterns, . . . ). Thanks to its modular structure the simulator can be easily adapted to different orbits, different scanning geometries and different frequencie

    Measuring currents, ice drift, and waves from space: the Sea Surface KInematics Multiscale monitoring (SKIM) concept

    Get PDF
    We propose a new satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40?km and more, with snapshots at least every day for latitudes 75 to 82, and every few days otherwise. The use of incidence angles at 6 and 12 degrees allows a measurement of the directional wave spectrum which yields accurate corrections of the wave-induced bias in the current measurements. The instrument principle, algorithm for current velocity and mission performance are presented here. The proposed instrument can reveal features on tropical ocean and marginal ice zone dynamics that are inaccessible to other measurement systems, as well as a global monitoring of the ocean mesoscale that surpasses the capability of today?s nadir altimeters. Measuring ocean wave properties facilitates many applications, from wave-current interactions and air-sea fluxes to the transport and convergence of marine plastic debris and assessment of marine and coastal hazards

    Co-operative and concurrent blending motion generators

    Get PDF
    In this paper we will be describing a new animation architecture and its implementation in our system LIVE. This model introduces a new blending layer approach which uses several motion generators on the same character at the same time. Despite the numerous studies done, animating characters or complex objects in a virtual world remains a difficult problem. In fact, the complexity of the data used to represent the characters (often articulated rigid bodies) makes their control by an animator difficult and using only one technique to generate motion tends to limit the quality of the animation. The solution will probably be provided by the co-operative or concurrency use of several motion control methods

    Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations

    Get PDF
    The WIVERN (WInd VElocity Radar Nephoscope) mission, now in Phase 0 of the ESA Earth Explorer program, promises to complement Doppler wind lidar by globally observing, for the first time, the vertical profiles of winds in cloudy areas. This work describes an initial assessment of the performances of the WIVERN conically scanning 94 GHz Doppler radar, the only payload of the mission. The analysis is based on an end-to-end simulator characterized by the following novel features tailored to the WIVERN radar: the conically scanning geometry, the inclusion of cross-polarization effects and the simulation of a radiometric mode, the applicability to global cloud model outputs via an orbital model, the incorporation of a mispointing model accounting for thermoelastic distortions, microvibrations, star-tracker uncertainties, etc., and the inclusion of the surface clutter. Some of the simulator capabilities are showcased for a case study involving a full rotational scan of the instrument. Preliminary findings show that mispointing errors associated with the antenna’s azimuthal mispointing are expected to be lower than 0.3 m s−1 (and strongly dependent on the antenna’s azimuthal scanning angle), wind shear and nonuniform beam-filling errors have generally negligible biases when full antenna revolutions are considered, non-uniform beam filling causes random errors strongly dependent on the antenna azimuthal scanning angle, but typically lower than 1 m s−1 , and cross-talk effects are easily predictable so that areas affected by strong cross-talk noise can be flagged. Overall, the quality of the Doppler velocities appears to strongly depend on several factors, such as the strength of the cloud reflectivity, the antenna-pointing direction relative to the satellite motion, the presence of strong reflectivity and/or wind gradients, and the strength of the surface clutter. The end-to-end simulations suggest that total wind errors meet the mission requirements in a good portion of the clouds detected by the WIVERN radar. The simulator will be used for studying tradeoffs for the different WIVERN configurations under consideration during Phase 0 (e.g., different antenna sizes, pulse lengths, and antenna patterns). Thanks to its modular structure, the simulator can be easily adapted to different orbits, different scanning geometries, and different frequencies

    Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations

    Get PDF
    Abstract. The WIVERN (WInd VElocity Radar Nephoscope) mission, now in Phase 0 of the ESA Earth Explorer program, promises to complement Doppler wind lidar by globally observing, for the first time, the vertical profiles of winds in cloudy areas. This work describes an initial assessment of the performances of the WIVERN conically scanning 94 GHz Doppler radar, the only payload of the mission. The analysis is based on an end-to-end simulator characterized by the following novel features tailored to the WIVERN radar: the conically scanning geometry, the inclusion of cross-polarization effects and the simulation of a radiometric mode, the applicability to global cloud model outputs via an orbital model, the incorporation of a mispointing model accounting for thermoelastic distortions, microvibrations, star-tracker uncertainties, etc., and the inclusion of the surface clutter. Some of the simulator capabilities are showcased for a case study involving a full rotational scan of the instrument. Preliminary findings show that mispointing errors associated with the antenna's azimuthal mispointing are expected to be lower than 0.3 m s−1 (and strongly dependent on the antenna's azimuthal scanning angle), wind shear and non-uniform beam-filling errors have generally negligible biases when full antenna revolutions are considered, non-uniform beam filling causes random errors strongly dependent on the antenna azimuthal scanning angle, but typically lower than 1 m s−1, and cross-talk effects are easily predictable so that areas affected by strong cross-talk noise can be flagged. Overall, the quality of the Doppler velocities appears to strongly depend on several factors, such as the strength of the cloud reflectivity, the antenna-pointing direction relative to the satellite motion, the presence of strong reflectivity and/or wind gradients, and the strength of the surface clutter. The end-to-end simulations suggest that total wind errors meet the mission requirements in a good portion of the clouds detected by the WIVERN radar. The simulator will be used for studying tradeoffs for the different WIVERN configurations under consideration during Phase 0 (e.g., different antenna sizes, pulse lengths, and antenna patterns). Thanks to its modular structure, the simulator can be easily adapted to different orbits, different scanning geometries, and different frequencies

    Controversies in Drug Allergy: Beta-Lactam Hypersensitivity Testing

    No full text
    All beta-lactam use is associated with a certain rate of adverse reactions. Many of these adverse reactions result in an allergy to the beta-lactam being entered into the patient's medical record. Unfortunately, only a small minority of these recorded allergies are clinically significant immunologically mediated drug hypersensitivity. An unconfirmed allergy to beta-lactams is a significant public health risk, because patients so labeled typically do not receive narrow-spectrum penicillins and cephalosporins when clinically indicated. The alternative antibiotics they receive result in poorer clinical outcomes, increased incidence of serious antibiotic-resistant infections, prolonged hospitalizations, and greater health care utilization. There is a wide variation in beta-lactam allergy incidence and prevalence around the world, based in part on the specific beta-lactams used and overused. There is a wide variation in specific protocols used to confirm current tolerance of beta-lactams and remove these inaccurate allergy reports. Harmonizing testing protocols, when possible, may lead to more widespread use of narrow-spectrum beta-lactams, when clinically indicated, and improve patient safety worldwide. Further research is needed to better understand the regional differences in reporting beta-lactam allergy as this relates to regional differences in beta-lactam use and overuse, the frequency of clinically significant immunologically mediated beta-lactam hypersensitivity, and the optimal testing strategies to confirm current tolerance, based on presenting clinical symptoms

    Systems biology combining human- and animal-data miRNA and mRNA data identifies new targets in ureteropelvic junction obstruction

    No full text
    International audienceAbstractBackgroundAlthough renal fibrosis and inflammation have shown to be involved in the pathophysiology of obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined. In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the results to clinical practice we have developed a systems biology approach combining omics data of both human and mouse obstructive nephropathy.ResultsWe have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that would not be identified otherwise.ConclusionsOur study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise
    corecore