364 research outputs found

    Angular momentum sharing in dissipative collisions

    Full text link
    Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of 93^{93}Nb and 116^{116}Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.Comment: 8 pages, 2 figure

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review

    Transport Properties, Thermodynamic Properties, and Electronic Structure of SrRuO3

    Full text link
    SrRuO3_3 is a metallic ferromagnet. Its electrical resistivity is reported for temperatures up to 1000K; its Hall coefficient for temperatures up to 300K; its specific heat for temperatures up to 230K. The energy bands have been calculated by self-consistent spin-density functional theory, which finds a ferromagnetic ordered moment of 1.45ÎŒB\mu_{{\rm B}} per Ru atom. The measured linear specific heat coefficient Îł\gamma is 30mJ/mole, which exceeds the theoretical value by a factor of 3.7. A transport mean free path at room temperature of ≈10A˚\approx 10 \AA is found. The resistivity increases nearly linearly with temperature to 1000K in spite of such a short mean free path that resistivity saturation would be expected. The Hall coefficient is small and positive above the Curie temperature, and exhibits both a low-field and a high-field anomalous behavior below the Curie temperature.Comment: 6 pages (latex) and 6 figures (postscript, uuencoded.) This paper will appear in Phys. Rev. B, Feb. 15, 199

    Half-metallic antiferromagnets in double perovskites: LaAVRuO6_6 (A=Ca, Sr, and Ba)

    Full text link
    Based on the theoretical exploration of electronic structures, we propose that the ordered double perovskites LaAVRuO6_6 and LaVO3_3/ARuO3_3 (001) superlattice (A = Ca, Sr and Ba) are strong candidates for half-metallic (HM) antiferromagnets (AFMs). %LaAVRuO6_6 and LaVO3_3/ARuO3_3 have the %100% spin polarizations at the Fermi level but with zero %total magnetic moments. We have shown that the HM-AFM nature in LaAVRuO6_6 is very robust regardless of (i) divalent ion replacement at A-sites, (ii) oxygen site relaxation, (iii) the inclusion of the Coulomb correlation, and (iv) cation disorder. A type of the double exchange interaction is expected to be responsible for the half-metallicity and the antiferromagnetism in these systems.Comment: 4 pages, 4 figure

    Perturbed angular correlation study of Ta-181-doped PbTi1-xHfxO3 compounds

    Full text link
    In this work, the hyperfine quadrupole interaction at Ta-doped PbTi1-xHfxO3 polycrystalline samples is studied for the first time. Powders with x=0.25, 0.50 and 0.75 were prepared and characterized by X-ray diffraction analysis. Perturbed Angular Correlation (PAC) analyses were done as a function of temperature, using low concentration Ta-181 nuclei as probes. In the ferroelectric and paraelectric phases of these compounds two sites were occupied by the probes. For each site the quadrupole frequency, asymmetry and relative distribution width parameters were obtained as a function of temperature above and below the Curie temperature (T-C). One of these sites was assigned to the regular Ti-Hf site, while the other one was assigned to some kind of defect. The behavior of the hyperfine parameters as a function of temperature was analyzed in terms of a recent published phase diagram and the presence of disorder below and above T-C. For the three compositions measured, the obtained hyperfine parameters present discontinuities which correspond to the ferroelectric-paraelectric phase transition. In both phases it was found broad frequency distributed interactions. The disorder in the electronic distribution would be responsible for the broad line width of the hyperfine interaction. (C) 2012 Elsevier B.V. All rights reserved

    Coalescent-based species delimitation in the sand lizards of the Liolaemus wiegmannii complex (Squamata: Liolaemidae)

    Get PDF
    Coalescent-based algorithms coupled with the access to genome-wide data have become powerful tools forassessing questions on recent or rapid diversification, as well as delineating species boundaries in the absence of reciprocal monophyly. In southern South America, the diversification of Liolaemus lizards during the Pleistocene is well documented and has been attributed to the climatic changes that characterized this recent period of time. Past climatic changes had harsh effects at extreme latitudes, including Patagonia, but habitat changes at intermediate latitudes of South America have also been recorded, including expansion of sand fields over northern Patagonia and Pampas). In this work, we apply a coalescent-based approach to study the diversification of the Liolaemus wiegmannii species complex, a morphologically conservative clade that inhabits sandy soils across northwest and south-central Argentina, and the south shores of Uruguay. Using four standard sequence markers (mitochondrial DNA and three nuclear loci) along with ddRADseq data we inferred species limits and a time calibrated species tree for the L. wiegmannii complex in order to evaluate the influence of Quaternary sand expansion/retraction cycles on diversification. We also evaluated the evolutionary independence of the recently described L. gardeli and inferred its phylogenetic position relative to L. wiegmannii. We find strong evidence for six allopatric candidate species within L. wiegmannii, which diversified during the Pleistocene. The Great Patagonian Glaciation (∌1 million years before present) likely split the species complex into two main groups: one composed of lineages associated with sub-Andean sedimentary formations, and the other mostly related to sand fields in the Pampas and northern Patagonia. We hypothesize that early speciation within L. wiegmannii was influenced by the expansion of sand dunes throughout central Argentina and Pampas. Finally, L. gardeli is supported as a distinct lineage nested within the L. wiegmannii complex.Fil: Villamil, JoaquĂ­n. Universidad de la RepĂșblica. Facultad de Ciencias; UruguayFil: Avila, Luciano Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Morando, Mariana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Sites, Jack W.. University Brigham Young; Estados UnidosFil: LeachĂ©, Adam D.. University of Washington; Estados UnidosFil: Maneyro, RaĂșl. Universidad de la RepĂșblica. Facultad de Ciencias; UruguayFil: Camargo Bentaberry, Arley. Universidad de la RepĂșblica; Urugua

    Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection

    Get PDF
    Background: Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results: We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions: Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts

    The genomic basis of the plant island syndrome in Darwin’s giant daisies

    Get PDF
    The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the ‘plant island syndrome’, include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin’s giant daisies
    • 

    corecore