961 research outputs found

    Status and prospects for hadron production experiments

    Get PDF
    Hadron production measurements for neutrino experiments is a well established field at CERN since the ’70s. Precise prediction of atmospheric neutrino fluxes, characterization of accelerator neutrino beams, quantification of pion production and capture for neutrino factory designs, all of these would profit from hadron production measurements. In recent years, interest in such studies was revived and new generation of low-energy (from 3 to 400 GeV) hadron production experiments were built or proposed. Such experiments all share a basic design, consisting in the presence of open-geometry spectrometers, as close as possible to full angular coverage, and aiming at full particle identification. Many new results are now provided by Harp in the very low energy range (3 to 15 GeV/c). NA61 at CERN and MIPP at Fermilab are taking data and in the next years will explore the medium energy range (up to 400 GeV/c). Finally at LHC energies for the first time thanks to the TOTEM experiment, it will be possible to measure with unprecedented precision the total cross section beyond 1 TeV/c

    Forward production of charged pions with incident π±\pi^{\pm} on nuclear targets measured at the CERN PS

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 0.5 \GeVc \leq p \le 8.0 \GeVc and angle 0.025 \rad \leq \theta \le 0.25 \rad in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections d2σ/dpdΩ {{\mathrm{d}^2 \sigma}}/{{\mathrm{d}p\mathrm{d}\Omega}} mainly at four incident pion beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared with the GEANT4 and MARS Monte Carlo simulationComment: to be published on Nuclear Physics

    T2K and Beyond

    Get PDF
    This paper presents the state of the art of the T2K experiment and the measurements prospects for the incoming years. After a brief description of the experiment, the most recent results will be illustrated. The observation of the electron neutrino appearance in a muon neutrino beam and the new high-precision measurements of the mixing angle θ13 by the reactor experiments have led to a reevaluation of the expected sensitivity to the oscillation parameters, relative to what was given in the original T2K proposal. For this reason the new physics potential of T2K for 7.8×1021 p.o.t. and for data exposure 3 times larger than that expected to be reachable with accelerator and beam line upgrades in 2026 before the start of operation of the next generation of long-baseline neutrino oscillation experiments will also be described in the text. In particular the last challenging scenario opens the door to the possibility of obtaining, under some conditions, a 3σ measurement excluding sin⁡(δCP)=0

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions III: Tantalum Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tantalum target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.Comment: 68 pages, 12 figures, corrections in v2: added 'HARP -CDP group' to author name, corrected two typos in Table 4 (last two p values for 65-90 degrees were all 0.972

    MiniBooNE

    Full text link
    The physics motivations, design, and status of the Booster Neutrino Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis is given on the ongoing preparatory work that is needed for the MiniBooNE muon neutrino to electron neutrino oscillation appearance search. This search aims to confirm or refute in a definitive and independent way the evidence for neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10-14 Sep 200

    Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \leq \theta < 2.15 \rad in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.

    A new design for the CERN-Fr\'ejus neutrino Super Beam

    Full text link
    We present an optimization of the hadron focusing system for a low-energy high-intensity conventional neutrino beam (Super-Beam) proposed on the basis of the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a baseline of 130 km in the Fr\'ejus site. The neutrino fluxes simulation relies on a new GEANT4 based simulation coupled with an optimization algorithm based on the maximization of the sensitivity limit on the θ13\theta_{13} mixing angle. A new configuration adopting a multiple horn system with solid targets is proposed which improves the sensitivity to θ13\theta_{13} and the CP violating phase δCP\delta_{CP}.Comment: 11 pages, 18 figures, 2 table

    Lifestyle and food habits impact on chronic diseases: Roles of PPARs

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert important functions in mediating the pleiotropic effects of diverse exogenous factors such as physical exercise and food components. Particularly, PPARs act as transcription factors that control the expression of genes implicated in lipid and glucose metabolism, and cellular proliferation and differentiation. In this review, we aim to summarize the recent advancements reported on the effects of lifestyle and food habits on PPAR transcriptional activity in chronic disease

    Forward pi+/- production in p-O2 and p-N2 interactions at 12 GeV/c

    Get PDF
    Measurements of double-differential charged pion production cross-sections in interactions of 12 GeV/c protons on O_2 and N_2 thin targets are presented in the kinematic range 0.5 GeV/c < p_{\pi} < 8 GeV/c and 50 mrad < \theta_{\pi} < 250 mrad (in the laboratory frame) and are compared with p--C results. For p--N_2 (p--O_2) interactions the analysis is performed using 38576 (7522) reconstructed secondary pions. The analysis uses the beam instrumentation and the forward spectrometer of the HARP experiment at CERN PS. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range. In particular, the present results allow the common hypothesis that p--C data can be used to predict the p--N_2 and p--O_2 pion production cross-sections to be tested
    corecore