10 research outputs found

    Analyse van de markten van landbouwprodukten van Kinshasa, Zaire

    No full text
    SIGLEKULeuven Campusbibliotheek Exacte Wetenschappen / UCL - Université Catholique de LouvainBEBelgiu

    Raloxifene-induced myeloma cell apoptosis: a study of nuclear factor-kappaB inhibition and gene expression signature.

    Full text link
    Because multiple myeloma remains associated with a poor prognosis, novel drugs targeting specific signaling pathways are needed. The efficacy of selective estrogen receptor modulators for the treatment of multiple myeloma is not well documented. In the present report, we studied the antitumor activity of raloxifene, a selective estrogen receptor modulator, on multiple myeloma cell lines. Raloxifene effects were assessed by tetrazolium salt reduction assay, cell cycle analysis, and Western blotting. Mobility shift assay, immunoprecipitation, chromatin immunoprecipitation assay, and gene expression profiling were performed to characterize the mechanisms of raloxifene-induced activity. Indeed, raloxifene, as well as tamoxifen, decreased JJN-3 and U266 myeloma cell viability and induced caspase-dependent apoptosis. Raloxifene and tamoxifen also increased the cytotoxic response to vincristine and arsenic trioxide. Moreover, raloxifene inhibited constitutive nuclear factor-kappaB (NF-kappaB) activity in myeloma cells by removing p65 from its binding sites through estrogen receptor alpha interaction with p65. It is noteworthy that microarray analysis showed that raloxifene treatment decreased the expression of known NF-kappaB-regulated genes involved in myeloma cell survival and myeloma-induced bone lesions (e.g., c-myc, mip-1alpha, hgf, pac1,...) and induced the expression of a subset of genes regulating cellular cycle (e.g., p21, gadd34, cyclin G2,...). In conclusion, raloxifene induces myeloma cell cycle arrest and apoptosis partly through NF-kappaB-dependent mechanisms. These findings also provide a transcriptional profile of raloxifene treatment on multiple myeloma cells, offering the framework for future studies of selective estrogen receptor modulators therapy in multiple myeloma

    Cyclin dependent kinase inhibitor (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenomas (FIPA) kindreds

    Get PDF
    Familial isolated pituitary adenoma (FIPA) occurs in families and is unrelated to multiple endocrine neoplasia type 1 and Carney complex. Mutations in AIP account only for 15-25% of FIPA families. CDKN1B mutations cause MEN4 in which affected patients can suffer from pituitary adenomas. With this study, we wanted to assess whether mutations in CDKN1B occur among a large cohort of AIP mutation-negative FIPA kindreds. Eighty-eight AIP mutation-negative FIPA families were studied and 124 affected subjects underwent sequencing of CDKN1B. Functional analysis of putative CDKN1B mutations was performed using in silico and in vitro approaches. Germline CDKN1B analysis revealed two nucleotide changes: c.286A>C (p.K96Q) and c.356T>C (p.I119T). In vitro, the K96Q change decreased p27 affinity for Grb2 but did not segregate with pituitary adenoma in the FIPA kindred. The I119T substitution occurred in a female patient with acromegaly. p27(I119T) shows an abnormal migration pattern by SDS-PAGE. Three variants (p.S56T, p.T142T, and c.605+36C>T) are likely nonpathogenic because In vitro effects were not seen. In conclusion, two patients had germline sequence changes in CDKN1B, which led to functional alterations in the encoded p27 proteins in vitro. Such rare CDKN1B variants may contribute to the development of pituitary adenomas, but their low incidence and lack of clear segregation with affected patients make CDKN1B sequencing unlikely to be of use in routine genetic investigation of FIPA kindreds. However, further characterization of the role of CDKN1B in pituitary tumorigenesis in these and other cases could help clarify the clinicopathological profile of MEN4

    Unravelling the intra-familial correlations and heritability of tumor types in MEN1, a GTE study.

    Full text link
    BACKGROUND: Multiple Endocrine Neoplasia syndrome type 1 (MEN1), which is secondary to mutation of the MEN1 gene, is a rare autosomal-dominant disease that predisposes mutation carriers to endocrine tumors. Most studies demonstrated the absence of direct genotype-phenotype correlations. The existence of a higher risk of death in the GTE-cohort associated with a mutations in the JunD interacting domain, suggests heterogeneity across families in disease expressivity. This study aims to assess the existence of modifying genetic factors by estimating the intra-familial correlations and heritability of the six main tumor types in MEN1. METHODS: The study included 797 patients from 265 kindred and studied seven phenotypic criteria: parathyroid and pancreatic neuroendocrine tumors (NETs), pituitary, adrenal, bronchial and thymic tumors (ThNETs) and the presence of metastasis. Intra-familial correlations and heritability estimates were calculated from family tree data using specific validated statistical analysis software. RESULTS: Intra-familial correlations were significant and decreased along parental degrees distance for pituitary, adrenal and th-NETs. The heritability of these three tumor types was consistently strong and significant with 64% (Standard Error [SE]=0.13; p < 0.001) for pituitary tumor, 65% (SE=0,21; p < 0.001) for adrenal tumors, and 97% (SE=0.41; p=0.006) for thNETs. CONCLUSION: The present study shows the existence of modifying genetic factors for thymus, adrenal and pituitary MEN1 tumor types. The identification of at-risk subgroups of individuals within cohorts is the first step towards personalization of care. Next generation sequencing on this subset of tumors will help identify the molecular basis of MEN1 variable genetic expressivity

    Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: a Groupe d'etude des Tumeurs Endocrines (GTE) cohort study.

    Get PDF
    International audienceMultiple endocrine neoplasia syndrome type 1 (MEN1), which is secondary to mutation of the MEN1 gene, is a rare autosomal-dominant disease that predisposes mutation carriers to endocrine tumors. Although genotype-phenotype studies have so far failed to identify any statistical correlations, some families harbor recurrent tumor patterns. The function of MENIN is unclear, but has been described through the discovery of its interacting partners. Mutations in the interacting domains of MENIN functional partners have been shown to directly alter its regulation abilities. We report on a cohort of MEN1 patients from the Groupe d'étude des Tumeurs Endocrines. Patients with a molecular diagnosis and a clinical follow-up, totaling 262 families and 806 patients, were included. Associations between mutation type, location or interacting factors of the MENIN protein and death as well as the occurrence of MEN1-related tumors were tested using a frailty Cox model to adjust for potential heterogeneity across families. Accounting for the heterogeneity across families, the overall risk of death was significantly higher when mutations affected the JunD interacting domain (adjusted HR = 1.88: 95%-CI = 1.15-3.07). Patients had a higher risk of death from cancers of the MEN1 spectrum (HR = 2.34; 95%-CI = 1.23-4.43). This genotype-phenotype correlation study confirmed the lack of direct genotype-phenotype correlations. However, patients with mutations affecting the JunD interacting domain had a higher risk of death secondary to a MEN1 tumor and should thus be considered for surgical indications, genetic counseling and follow-up
    corecore