4,179 research outputs found

    "war to the knife" against thromboinflammation to protect endothelial function of COVID-19 patients

    Get PDF
    In this viewpoint, we summarize the relevance of thromboinflammation in COVID-19 and discuss potential mechanisms of endothelial injury as a key point for the development of lung and distant organ dysfunction, with a focus on direct viral infection and cytokine-mediated injury. Entanglement between inflammation and coagulation and resistance to heparin provide a rationale to consider other therapeutic approaches in order to preserve endothelial function and limit microthrombosis, especially in severe forms. These strategies include nebulized heparin, N-acetylcysteine, plasma exchange and/or fresh frozen plasma, plasma derivatives to increase the level of endogenous anticoagulants (tissue factor pathway inhibitor, activated protein C, thrombomodulin, antithrombin), dipyridamole, complement blockers, different types of stem cells, and extracellular vesicles. An integrated therapy including these drugs has the potential to improve outcomes in COVID-19

    Association between red cell distribution width and response to methotrexate in rheumatoid arthritis

    Get PDF
    Red cell distribution width (RDW) is an unconventional biomarker of inflammation. We aimed to explore its role as a predictor of treatment response in rheumatoid arthritis (RA). Eighty-two RA patients (55 females), median age [interquartile range] 63 years [52-69], were selected by scanning the medical records of a rheumatology clinic, to analyze the associations between baseline RDW, disease activity scores and inflammatory markers, as well as the relationship between RDW changes following methotrexate (MTX) and treatment response. The lower the median baseline RDW, the greater were the chances of a positive EULAR response at three months, 13.5% [13.0-14.4] being among those with good response, vs 14.0% [13.2-14.7] and 14.2% [13.5- 16.0] (p=0.009) among those with moderate and poor response, respectively. MTX treatment was followed by a significant RDW increase (p<0.0001). The increase of RDW was greater among patients with good EULAR response, becoming progressively smaller in cases with moderate and poor response (1.0% [0.4-1.4] vs. 0.7 [0.1-2.0] vs. 0.3 [-0.1-0.8]; p=0.03). RDW is a strong predictor of early response to MTX in RA. RDW significantly increases after MTX initiation in parallel to treatment response, suggesting a role as a marker of MTX effectiveness

    Quasi-normal modes of the scalar hairy black hole

    Full text link
    We calculate QNMs of the scalar hairy black hole in the AdS background using Horowitz-Hubeny method for the potential that is not known in analytical form. For some black hole parameters we found pure imaginary frequencies. Increasing of the scalar field mass does not cause the imaginary part to vanish, it reaches some minimum and then increases, thus in the case under consideration the infinitely long living modes (quasi-resonances) do not appear.Comment: 17 pages, 17 figures, LaTe

    Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: A pilot study

    Get PDF
    Dietary polyphenols have beneficial effects on glucose/lipid metabolism in subjects at high risk to develop type 2 diabetes; however, the underlying mechanisms are not clear. We aimed to evaluate: 1) the acute effects of the consumption of a drink rich in polyphenols from red grape pomace (RGPD) on glucose/insulin and triglyceride responses to a standard meal in healthy individuals, and, 2) the relationship between plasma levels of phenolic metabolites and metabolic parameters

    Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure

    Full text link
    The macroscopic dielectric function in the random-phase-approximation without local field effect has been implemented using the local density approximation with an all electron, full-potential linear muffin-tin orbital basis-set. This method is used to investigate the optical properties of the semiconductors Si, Ge, and GaAs under hydrostatic pressure. The pressure dependence of the effective dielectric function is compared to the experimental data of Go\~ni and coworkers, and an excellent agreement is found when the so called ``scissors-operator'' shift (SOS) is used to account for the correct band gap at Γ\Gamma. The effect of the 3d3d semi-core states in the interband transitions hardly changes the static dielectric function, ϵ∞\epsilon_\infty; however, their contribution to the intensity of absorption for higher photon energies is substantial. The spin-orbit coupling has a significant effect on ϵ∞\epsilon_\infty of Ge and GaAs, but not of Si. The E1E_1 peak in the dynamical dielectric function is strongly underestimated for Si, but only slightly for Ge and GaAs, suggesting that excitonic effects might be important only for Si.Comment: 29 RevTex pages and 12 figs; in press in Physical Review

    Support of dS/CFT correspondence from space-time perturbations

    Get PDF
    We analyse the spectrum of perturbations of the de Sitter space on the one hand, while on the other hand we compute the location of the poles in the Conformal Field Theory (CFT) propagator at the border. The coincidence is striking, supporting a dS/CFT correspondence. We show that the spectrum of thermal excitations of the CFT at the past boundary I−I^{-} together with that spectrum at the future boundary I+I^{+} is contained in the quasi-normal mode spectrum of the de Sitter space in the bulk.Comment: Modified version, appearing in Phys. Rev. D66 (2002) 10401

    On the Advent of Super-Resolution Microscopy in the Realm of Polycomb Proteins

    Get PDF
    Simple Summary The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting because the tridimensional arrangement of chromatin is implicated in multiple regulatory mechanisms. Indeed, a crucial hallmark of cellular life is the widespread ordering of many biological processes in nano-/mesoscopic domains (10-200 nm), which now may be revealed by an imaging toolbox referred to as super-resolution microscopy. In this context, polycomb proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription. This work reviews the current state-of-the-art super-resolution microscopy applied to polycomb proteins. Of note, super-resolution data have complemented cutting-edge molecular biology methods in providing a rational framework for understanding how polycomb proteins may shape 3D chromatin topologies and functions. The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation. The recent development of super-resolution microscopy (SRM) has strongly contributed to improving our comprehension of several aspects of nano-/mesoscale (10-200 nm) chromatin domains. Here, we review the current state-of-the-art SRM applied to PcG proteins, showing that the application of SRM to PcG activity and organization is still quite limited and mainly focused on the 3D assembly of PcG-controlled genomic loci. In this context, SRM approaches have mostly been applied to multilabel fluorescence in situ hybridization (FISH). However, SRM data have complemented the maps obtained from chromosome capture experiments and have opened a new window to observe how 3D chromatin topology is modulated by PcGs

    The XMM deep survey in the CDF-S III. Point source catalogue and number counts in the hard X-rays

    Get PDF
    Nuclear obscuration plays a key role in the initial phases of AGN growth, yet not many highly obscured active galactic nuclei (AGN) are currently known beyond the local Universe, and their search is an active topic of research. The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick (NH ≳ 1024 cm-2) AGN. The large effective area of XMM-Newton in the 2–10 and 5–10 keV bands, coupled with a 3.45 Ms nominal exposure time (2.82 and 2.45 Ms after light curve cleaning for MOS and PN, respectively), allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM-Newton survey currently published in the 5–10 keV band. The large multi-wavelength and spectroscopic coverage of the CDFS area allows for an immediate and abundant scientific return. In this paper, we present the data reduction of the XMM-CDFS observations, the method for source detection in the 2–10 and 5–10 keV bands, and the resulting catalogues. A number of 339 and 137 sources are listed in the above bands with flux limits of 6.6 × 10-16 and 9.5 × 10-16 erg s-1 cm-2, respectively. The flux limits at 50% of the maximum sky coverage are 1.8 × 10-15 and 4.0 × 10-15 erg s-1 cm-2, respectively. The catalogues have been cross-correlated with the Chandra ones: 315 and 130 identifications have been found with a likelihood-ratio method, respectively. A number of 15 new sources, previously undetected by Chandra, is found; 5 of them lie in the 4 Ms area. Redshifts, either spectroscopic or photometric, are available for ~ 95% of the sources. The number counts in both bands are presented and compared to other works. The survey coverage has been calculated with the help of two extensive sets of simulations, one set per band. The simulations have been produced with a newly-developed simulator, written with the aim of the most careful reproduction of the background spatial properties. For this reason, we present a detailed decomposition of the XMM-Newton background into its components: cosmic, particle, and residual soft protons.The three components have different spatial distributions. The importance of these three components depends on the band and on the camera; the particle background is the most important one (80–90% of the background counts), followed by the soft protons (4–20%)
    • …
    corecore