208 research outputs found

    Inactivation of the lysine binding sites of human plasminogen (hPg) reveals novel structural requirements for the tight hPg conformation, M-protein binding, and rapid activation

    Get PDF
    Accelerated activation of the human plasminogen zymogen (hPg) to two-chain active plasmin (hPm) is achieved following conformational changes induced by ligand-binding at the lysine-binding sites (LBSs) in four of the five hPg kringle domains. In this manner, pattern D skin-trophic strains of Group A streptococci (GAS), through the expression of surface plasminogen-binding M-protein (PAM), immobilize surface hPg, thereby enabling rapid hPg activation by GAS-secreted streptokinase (SK). Consequently, GAS enhances virulence by digesting extracellular and tight cellular junctional barriers using hPm activity. Many studies have demonstrated the singular importance of the kringle-2 domain of hPg (K2hPg) to PAM-binding using hPg fragments. Recently, we showed, using full-length hPg, that K2hPg is critical for PAM binding. However, these studies did not eliminate any modulatory effects of the non-K2hPg LBS on this interaction. Moreover, we sought to establish the significance of the intramolecular interaction between Asp219 of the LBS of K2hPg and its serine protease domain binding partner, Lys708, to conformational changes in hPg. In the current study, selective inactivation of the LBS of K1hPg, K4hPg, and K5hPg revealed that the LBS of these kringle domains are dispensable for hPg binding to PAM. However, the attendant conformational change upon inactivation of K4hPg LBS increased the affinity of hPg for PAM by an order of magnitude. This finding suggests that the native hPg conformation encloses PAM-binding exosites or sterically hinders access to K2hPg. While simultaneous inactivation of the LBS of K1hPg, K4hPg, and K5hPg inhibited hPg/SK association alongside hPg activation, the replacement of Lys708 generated a slight conformational change that optimally accelerated hPg activation. Thus, we accentuate disparate functions of hPg LBS and conclude, using intact proteins, that K2hPg plays a central role in regulating hPg activation

    Fas/CD95 Deficiency in ApcMin/+ Mice Increases Intestinal Tumor Burden

    Get PDF
    Fas, a member of the tumor necrosis family, is responsible for initiating the apoptotic pathway when bound to its ligand, Fas-L. Defects in the Fas-mediated apoptotic pathway have been reported in colorectal cancer.In the present study, a variant of the Apc(Min/+) mouse, a model for the human condition, Familial Adenomatous Polyposis (FAP), was generated with an additional deficiency of Fas (Apc(Min/+)/Fas(lpr)) by cross-breeding Apc(Min/+) mice with Fas deficient (Fas(lpr)) mice. One of the main limitations of the Apc(Min/+) mouse model is that it only develops benign polyps. However, Apc(Min/+)/Fas(lpr) mice presented with a dramatic increase in tumor burden relative to Apc(Min/+) mice and invasive lesions at advanced ages. Proliferation and apoptosis markers revealed an increase in cellular proliferation, but negligible changes in apoptosis, while p53 increased at early ages. Fas-L was lower in Apc(Min/+)/Fas(lpr) mice relative to Apc(Min/+) cohorts, which resulted in enhanced inflammation.This study demonstrated that imposition of a Fas deletion in an Apc(Min/+) background results in a more aggressive phenotype of the Apc(Min/+) mouse model, with more rapid development of invasive intestinal tumors and a decrease in Fas-L levels

    A deficiency of uPAR alters endothelial angiogenic function and cell morphology

    Get PDF
    The angiogenic potential of a cell requires dynamic reorganization of the cytoskeletal architecture that involves the interaction of urokinase-type plasminogen activator receptor (uPAR) with the extracellular matrix. This study focuses on the effect of uPAR deficiency (uPAR-/-) on angiogenic function and associated cytoskeletal organization. Utilizing murine endothelial cells, it was observed that adhesion, migration, proliferation, and capillary tube formation were altered in uPAR-/- cells compared to wild-type (WT) cells. On a vitronectin (Vn) matrix, uPAR-/- cells acquired a "fried egg" morphology characterized by circular actin organization and lack of lamellipodia formation. The up-regulation of β1 integrin, FAK(P-Tyr925), and paxillin (P-Tyr118), and decreased Rac1 activation, suggested increased focal adhesions, but delayed focal adhesion turnover in uPAR-/- cells. This accounted for the enhanced adhesion, but attenuated migration, on Vn. VEGF-enriched Matrigel implants from uPAR-/- mice demonstrated a lack of mature vessel formation compared to WT mice. Collectively, these results indicate that a uPAR deficiency leads to decreased angiogenic functions of endothelial cells

    A key role for the urokinase plasminogen activator (uPA) in invasive Group A streptococcal infection

    Get PDF
    Recruitment of the serine protease plasmin is central to the pathogenesis of many bacterial species, including Group A streptococcus (GAS), a leading cause of morbidity and mortality globally. A key process in invasive GAS disease is the ability to accumulate plasmin at the cell surface, however the role of host activators of plasminogen in this process is poorly understood. Here, we demonstrate for the first time that the urokinase-type plasminogen activator (uPA) contributes to plasmin recruitment and subsequent invasive disease initiation in vivo. In the absence of a source of host plasminogen activators, streptokinase (Ska) was required to facilitate cell surface plasmin acquisition by GAS. However, in the absence of Ska, host activators were sufficient to promote cell surface plasmin acquisition by GAS strain 5448 during incubation with plasminogen or human plasma. Furthermore, GAS were able mediate a significant increase in the activation of zymogen pro-uPA in human plasma. In order to assess the contribution of uPA to invasive GAS disease, a previously undescribed transgenic mouse model of infection was employed. Both C57/black 6J, and AlbPLG1 mice expressing the human plasminogen transgene, were significantly more susceptible to invasive GAS disease than uPA−/− mice. The observed decrease in virulence in uPA−/−mice was found to correlate directly with a decrease in bacterial dissemination and reduced cell surface plasmin accumulation by GAS. These findings have significant implications for our understanding of GAS pathogenesis, and research aimed at therapeutic targeting of plasminogen activation in invasive bacterial infections

    Effect of Sulindac Sulfide on Metallohydrolases in the Human Colon Cancer Cell Line HT-29

    Get PDF
    Matrix metalloproteinase 7 (MMP7), a metallohydrolase involved in the development of several cancers, is downregulated in the ApcMin/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases

    Imaging of Burkitt lymphoma in pediatric patients

    Full text link
    The imaging procedures utilized at presentation in the diagnostic work-up of 19 children with Burkitt lymphoma were reviewed. The distribution of disease was compared to other tumors of childhood so that the most valuable modalities could be identified. Burkitt lymphoma is a rapidly growing tumor in the child, making it essential to suggest the diagnosis as quickly as possible so that biopsy and treatment can be instigated. The primary area of involvement was abdominal (15 of 19), gastrointestinal, intraperitoneal adenopathy, hepatic and pancreatic without retroperitoneal adenopathy. Pleural effusions were common without hilar and mediastinal adenopathy. This is in contrast to other tumors of childhood where mediastinal and hilar disease in the chest and retroperitoneal node involvement in the abdomen are common. Thus sonography is an excellent imaging modality, easily identifying the extent of the disease and so suggesting the diagnosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46683/1/247_2006_Article_BF02388718.pd

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Functional Dissection of Streptococcus pyogenes M5 Protein: the Hypervariable Region is Essential for Virulence

    Get PDF
    The surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg)-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here. Mixed infection experiments with wild type bacteria demonstrated that mutants lacking the N-terminal hypervariable region (HVR) or the Fg-binding B-repeat region were strongly attenuated, while a mutant lacking the conserved C-repeats was only slightly attenuated. Because the HVR of M5 is not required for phagocytosis resistance, our data imply that this HVR plays a major but unknown role during acute infection. The B-repeat region is required for phagocytosis resistance and specifically binds Fg, suggesting that it promotes virulence by binding Fg. However, B-repeat mutants were attenuated even in Fg-deficient mice, implying that the B-repeats may have a second function, in addition to Fg-binding. These data demonstrate that two distinct M5 regions, including the HVR, are essential to virulence during the early stages of an infection. In particular, our data provide the first in vivo evidence that the HVR of an M protein plays a major role in virulence, focusing interest on the molecular role of this region

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
    corecore