56 research outputs found

    The first maps of κd - the dust mass absorption coefficient - in nearby galaxies, with DustPedia

    Get PDF
    The dust mass absorption coefficient, κd is the conversion function used to infer physical dust masses from observations of dust emission. However, it is notoriously poorly constrained, and it is highly uncertain how it varies, either between or within galaxies. Here we present the results of a proof-of-concept study, using the DustPedia data for two nearby face-on spiral galaxies M 74 (NGC 628) and M 83 (NGC 5236), to create the first ever maps of κd in galaxies. We determine κd using an empirical method that exploits the fact that the dust-to-metals ratio of the interstellar medium is constrained by direct measurements of the depletion of gas-phase metals. We apply this method pixel-by-pixel within M 74 and M 83, to create maps of κd. We also demonstrate a novel method of producing metallicity maps for galaxies with irregularly sampled measurements, using the machine learning technique of Gaussian process regression. We find strong evidence for significant variation in κd. We find values of κd at 500 μm spanning the range 0.11-0.25 m^{2 kg^{-1}} in M 74, and 0.15-0.80 m^{2 kg^{-1}} in M 83. Surprisingly, we find that κd shows a distinct inverse correlation with the local density of the interstellar medium. This inverse correlation is the opposite of what is predicted by standard dust models. However, we find this relationship to be robust against a large range of changes to our method - only the adoption of unphysical or highly unusual assumptions would be able to suppress it

    Nonsense-mediated decay mechanism is a possible modifying factor of clinical outcome in nonsense cd39 beta thalassemia genotype

    Get PDF
    Nonsense-mediated mRNA decay (NMD) is a surveillance system to prevent the synthesis of non-functional proteins. In β-thalassemia, NMD may have a role in clinical outcome. An example of premature translation stop codons appearing for the first time is the β-globin cd39 mutation; when homozygous, this results in a severe phenotype. The aim of this study was to determine whether the homozygous nonsense cd39 may have a milder phenotype in comparison with IVS1,nt110/cd39 genotype. Genotypes have been identified from a cohort of 568 patients affected by β-thalassemia. These genotypes were compared with those found in 577 affected fetuses detected among 2292 prenatal diagnoses. The nine most common genotypes, each with an incidence rate of 1.5% or over, and together accounting for 80% of genotype frequencies, underwent statistical analysis. Genotype prevalence was calculated within the overall group. Results are expressed as proportions with 95% confidence intervals; P≤0.05 was considered statistically significant. A binomial distribution was assumed for each group; z-tests were used to compare genotype frequencies observed in the patient group with frequencies in the affected fetus group. In the absence of selecting factors, prevalence of these two genotypes was compared between a cohort of 568 β-thalassemia patients (PTS) and 577 affected fetuses (FOET) detected during the same period. IVS1,nt110/cd39 was significantly more prevalent in FOET than PTS (P<0.0001), while there was no significant difference in prevalence of cd39/cd39 in FOET compared with PTS (P=0.524). These results suggest a cd39 genotype NMD mechanism may be associated with improved clinical outcomes in thalassemia major

    Stellar metallicity from optical and UV spectral indices: test case for WEAVE-StePS

    Get PDF
    Context. The upcoming generation of optical spectrographs on four meter-class telescopes, with their huge multiplexing capabilities, excellent spectral resolution, and unprecedented wavelength coverage, will provide high-quality spectra for thousands of galaxies. These data will allow us to examine of the stellar population properties at intermediate redshift, an epoch that remains unexplored by large and deep surveys. Aims. We assess our capability to retrieve the mean stellar metallicity in galaxies at different redshifts and signal-to-noise ratios (S/N), while simultaneously exploiting the ultraviolet (UV) and optical rest-frame wavelength coverage. Methods. The work is based on a comprehensive library of spectral templates of stellar populations, covering a wide range of age and metallicity values and built assuming various star formation histories (SFHs), to cover an observable parameter space with diverse chemical enrichment histories and dust attenuation. We took into account possible observational errors, simulating realistic observations of a large sample of galaxies carried out with WEAVE at the William Herschel Telescope at different redshifts and S/N values. We measured all the available and reliable indices on the simulated spectra and on the comparison library. We then adopted a Bayesian approach to compare the two sets of measurements in order to obtain the probability distribution of stellar metallicity with an accurate estimate of the uncertainties. Results. The analysis of the spectral indices has shown how some mid-UV indices, such as BL3580 and Fe3619, can provide reliable constraints on stellar metallicity, along with optical indicators. The analysis of the mock observations has shown that even at S/N = 10, the metallicity can be derived within 0.3 dex, in particular, for stellar populations older than 2 Gyr. The S/N value plays a crucial role in the uncertainty of the estimated metallicity and so, the differences between S/N = 10 and S/N = 30 are quite large, with uncertainties of ∼ 0.15 dex in the latter case. On the contrary, moving from S/N = 30 to S/N = 50, the improvement on the uncertainty of the metallicity measurements is almost negligible. Our results are in good agreement with other theoretical and observational works in the literature and show how the UV indicators, coupled with classic optical ones, can be advantageous in constraining metallicities. Conclusions. We demonstrate that a good accuracy can be reached on the spectroscopic measurements of the stellar metallicity of galaxies at intermediate redshift, even at low S/N, when a large number of indices can be employed, including some UV indices. This is very promising for the upcoming surveys carried out with new, highly multiplexed, large-field spectrographs, such as StePS at the WEAVE and 4MOST, which will provide spectra of thousands of galaxies covering large spectral ranges (between 3600 and 9000 Å in the observed frame) at relatively high S/N (> 10 Å−1 )

    High-resolution, 3D radiative transfer modelling : IV. AGN-powered dust heating in NGC 1068

    Get PDF
    The star formation rate and the mass of interstellar medium (ISM) have a high predictive power for the future evolution of a galaxy. Nevertheless, deriving such properties is not straightforward. Dust emission, an important diagnostic of star formation and ISM mass throughout the Universe, can be powered by sources unrelated to ongoing star formation. In the framework of the DustPedia project we set out to disentangle the radiation of the ongoing star formation from that of the older stellar populations. This is done through detailed 3D radiative transfer simulations of face-on spiral galaxies. We take special care in modelling the morphological features present for each source of radiation. In this particular study, we focus on NGC 1068, which in addition contains an active galactic nucleus (AGN). The effect of diffuse dust heating by an AGN (beyond the torus) has so far only been investigated for quasars. This additional dust heating source further contaminates the broadband fluxes that are used by classic galaxy modelling tools to derive physical properties. We aim to fit a realistic model to the observations of NGC 1068 and quantify the contribution of the several dust-heating sources. Our model is able to reproduce the global spectral energy distribution of the galaxy. It matches the resolved optical and infrared images fairly well, but deviates in the UV and the submillimetre (submm). This is partly due to beam smearing effects, but also because the input dust distribution is not sufficiently peaked in the centre. We find that AGN contamination of the broadband fluxes has a strong dependency on wavelength. It peaks in the mid-infrared, drops in the far-infrared, and then rises again at submm wavelengths. We quantify the contribution of the dust-heating sources in each 3D dust cell and find a median value of 83% for the star formation component. The AGN contribution is measurable at the percentage level in the disc, but quickly increases in the inner few hundred parsecs, peaking above 90%. This is the first time the phenomenon of an AGN heating the diffuse dust beyond its torus is quantified in a nearby star-forming galaxy. NGC 1068 only contains a weak AGN, meaning this effect could be stronger in galaxies with a more luminous AGN. This could significantly impact the derived star formation rates and ISM masses for such systems

    Redshift identification of X-ray-selected active galactic nuclei in the J1030 field: searching for large-scale structures and high-redshift sources

    Get PDF
    We publicly release the spectroscopic and photometric redshift catalog of the sources detected with Chandra in the field of the z = 6.3 quasar SDSS J1030+0525. This is currently the fifth-deepest extragalactic X-ray field, and reaches a 0.5 2 keV flux limit of f0:5-2 = 6 × 10-17 erg s-1 cm-2. Using two independent methods, we measure a photometric redshift for 243 objects, while 123 (51%) sources also have a spectroscopic redshift, 110 of which come from an INAF-Large Binocular Telescope (LBT) Strategic Program.We use the spectroscopic redshifts to determine the quality of the photometric ones, and find it to be in agreement with that of other X-ray surveys which used a similar number of photometric data points. In particular, we measure a sample normalized median absolute deviation of NMAD = 1.48 × median(||zphot - zspec||/(1 + zspec)) = 0.065. We use these new spectroscopic and photometric redshifts to study the properties of the Chandra J1030 field.We observe several peaks in our spectroscopic redshift distribution between z = 0.15 and z = 1.5, and find that the sources in each peak are often distributed across the whole Chandra field of view. This confirms that X-ray-selected AGNs can efficiently track large-scale structures over physical scales of several megaparsecs. Finally, we computed the Chandra J1030 z > 3 number counts: while the spectroscopic completeness of our sample is limited at high redshift, our results point towards a potential source excess at z ≥ 4, which we plan to either confirm or reject in the near future with dedicated spectroscopic campaigns

    WEAVE-StePS. A stellar population survey using WEAVE at WHT

    Get PDF
    The upcoming new generation of optical spectrographs on four-meter-class telescopes will provide valuable opportunities for forthcoming galaxy surveys through their huge multiplexing capabilities, excellent spectral resolution, and unprecedented wavelength coverage. WEAVE is a new wide-field spectroscopic facility mounted on the 4.2 m William Herschel Telescope in La Palma. WEAVE-StePS is one of the five extragalactic surveys that will use WEAVE during its first five years of operations. It will observe galaxies using WEAVE MOS (~950 fibres across a field of view of ~3 deg2 on the sky) in low-resolution mode (R~5000, spanning the wavelength range 3660-9590 AA). WEAVE-StePS will obtain high-quality spectra (S/N ~ 10 per AA at R~5000) for a magnitude-limited (I_AB = 20.5) sample of ~25,000 galaxies, the majority selected at z>=0.3. The survey goal is to provide precise spectral measurements in the crucial interval that bridges the gap between LEGA-C and SDSS data. The wide area coverage of ~25 deg2 will enable us to observe galaxies in a variety of environments. The ancillary data available in each observed field (including X-ray coverage, multi-narrow-band photometry and spectroscopic redshift information) will provide an environmental characterisation for each observed galaxy. This paper presents the science case of WEAVE-StePS, the fields to be observed, the parent catalogues used to define the target sample, and the observing strategy chosen after a forecast of the expected performance of the instrument for our typical targets. WEAVE-StePS will go back further in cosmic time than SDSS, extending its reach to encompass more than ~6 Gyr, nearly half of the age of the Universe. The spectral and redshift range covered by WEAVE-StePS will open a new observational window by continuously tracing the evolutionary path of galaxies in the largely unexplored intermediate-redshift range.Comment: 15 pages, 9 figures, A&A in pres

    Radial distribution of dust, stars, gas, and star-formation rate in DustPedia face-on galaxies

    Get PDF
    Aims. The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods. This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results. Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to ~0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3−9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient

    WEAVE-StePS: A stellar population survey using WEAVE at WHT

    Get PDF
    Context. The upcoming new generation of optical spectrographs on four-meter-class telescopes will provide valuable opportunities for forthcoming galaxy surveys through their huge multiplexing capabilities, excellent spectral resolution, and unprecedented wavelength coverage. Aims. WEAVE is a new wide-field spectroscopic facility mounted on the 4.2 m William Herschel Telescope in La Palma. WEAVE-StePS is one of the five extragalactic surveys that will use WEAVE during its first five years of operations. It will observe galaxies using WEAVE MOS (∼950 fibres distributed across a field of view of ∼3 square degrees on the sky) in low-resolution mode (R ∼ 5000, spanning the wavelength range 3660-9590 Å). Methods. WEAVE-StePS will obtain high-quality spectra (S/N ∼ 10 Å -1 at R ∼ 5000) for a magnitude-limited (IAB = 20.5) sample of ∼25 000 galaxies, the majority selected at z ≥ 0.3. The survey goal is to provide precise spectral measurements in the crucial interval that bridges the gap between LEGA-C and SDSS data. The wide area coverage of ∼25 square degrees will enable us to observe galaxies in a variety of environments. The ancillary data available in each of the observed fields (including X-ray coverage, multi-narrow-band photometry and spectroscopic redshift information) will provide an environmental characterisation for each observed galaxy. Results. This paper presents the science case of WEAVE-StePS, the fields to be observed, the parent catalogues used to define the target sample, and the observing strategy that was chosen after a forecast of the expected performance of the instrument for our typical targets. Conclusions. WEAVE-StePS will go back further in cosmic time than SDSS, extending its reach to encompass more than ∼6 Gyr. This is nearly half of the age of the Universe. The spectral and redshift range covered by WEAVE-StePS will open a new observational window by continuously tracing the evolutionary path of galaxies in the largely unexplored intermediate-redshift range
    corecore