115 research outputs found

    Timing of subsurface heat magnitude for the growth of El Niño events

    Get PDF
    The subsurface heat buildup in the western tropical Pacific and the recharge phase in equatorial heat content are intrinsic elements of El Niño–Southern Oscillation, leading to changes in zonal wind stress, sea surface temperature, and thermocline tilt that characterize the growing and mature phases of El Niño (EN) events. Here we use numerical simulations to study the impact on subsequent EN episodes of a sudden increase or decrease in ocean heat content during the recharge phase and compare results with previous studies in which this perturbation is prescribed earlier during the tilting mode. We found that while not substantially affected by the phase at which a sudden rise in heat content is prescribed, the timing and magnitude of the events are very sensitive to the phase at which a major decrease is imposed. The different response to the phase of increases and decreases substantiates the importance of nonlinear subsurface ocean dynamics to the onset and growth of EN episodes and provides insight into the irreversibility of the events at different stages of the oscillation

    Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Nino: Lessons learned

    Get PDF
    A substantial body of work supports a teleconnection between the El Nino-Southern Oscillation (ENSO) and cholera incidence in Bangladesh. In particular, high positive anomalies during the winter (Dec-Feb) in sea surface temperatures (SST) in the tropical Pacific have been shown to exacerbate the seasonal outbreak of cholera following the monsoons from August to November. Climate studies have indicated a role of regional precipitation over Bangladesh in mediating this long-distance effect. Motivated by this previous evidence, we took advantage of the strong 2015-2016 El Nino event to evaluate the predictability of cholera dynamics for the city in recent times based on two transmission models that incorporate SST anomalies and are fitted to the earlier surveillance records starting in 1995. We implemented a mechanistic temporal model that incorporates both epidemiological processes and the effect of ENSO, as well as a previously published statistical model that resolves space at the level of districts (thanas). Prediction accuracy was evaluated with "out-of-fit" data from the same surveillance efforts (post 2008 and 2010 for the two models respectively), by comparing the total number of cholera cases observed for the season to those predicted by model simulations eight to twelve months ahead, starting in January each year. Although forecasts were accurate for the low cholera risk observed for the years preceding the 2015-2016 El Nino, the models also predicted a high probability of observing a large outbreak in fall 2016. Observed cholera cases up to Oct 2016 did not show evidence of an anomalous season. We discuss these predictions in the context of regional and local climate conditions, which show that despite positive regional rainfall anomalies, rainfall and inundation in Dhaka remained low. Possible explanations for these patterns are given together with future implications for cholera dynamics and directions to improve their prediction for the city

    Verification of Land-Atmosphere Coupling in Forecast Models, Reanalyses and Land Surface Models Using Flux Site Observations

    Get PDF
    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring

    Improvements in the X-ray luminosity function and constraints on the Cosmological parameters from X-ray luminous clusters

    Full text link
    We show how to improve constraints on \Omega_m, \sigma_8, and the dark-energy equation-of-state parameter, w, obtained by Mantz et al. (2008) from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS and the REFLEX galaxy cluster samples with luminosities L> 3 \times 10^{44} erg/s in the 0.1--2.4 keV band. To this aim, we use Tinker et al. (2008) mass function instead of Jenkins et al. (2001) and the M-L relationship obtained from Del Popolo (2002) and Del Popolo et al. (2005). Using the same methods and priors of Mantz et al. (2008), we find, for a \LambdaCDMuniverse,Ωm=0.280.04+0.05andσ8=0.780.05+0.04CDM universe, \Omega_m=0.28^{+0.05}_{-0.04} and \sigma_8=0.78^{+0.04}_{-0.05} while the result of Mantz et al. (2008) gives less tight constraints Ωm=0.280.07+0.11\Omega_m=0.28^{+0.11}_{-0.07} and \sigma_8=0.78^{+0.11}_{-0.13}. In the case of a wCDM model, we find \Omega_m=0.27^{+0.07}_{-0.06}, σ8=0.810.06+0.05\sigma_8=0.81^{+0.05}_{-0.06} and w=1.30.4+0.3w=-1.3^{+0.3}_{-0.4}, while in Mantz et al. (2008) they are again less tight \Omega_m=0.24^{+0.15}_{-0.07}, \sigma_8=0.85^{+0.13}_{-0.20} and w=-1.4^{+0.4}_{-0.7}. Combining the XLF analysis with the f_{gas}+CMB+SNIa data set results in the constraint \Omega_m=0.269 \pm 0.012, \sigma_8=0.81 \pm 0.021 and w=-1.02 \pm 0.04, to be compared with Mantz et al. (2008), \Omega_m=0.269 \pm 0.016, \sigma_8=0.82 \pm 0.03 and w=-1.02 \pm 0.06. The tightness of the last constraints obtained by Mantz et al. (2008), are fundamentally due to the tightness of the fgasf_{gas}+CMB+SNIa constraints and not to their XLF analysis. Our findings, consistent with w=-1, lend additional support to the cosmological-constant model.Comment: 9 pages, 4 Figures. A&A accepted. Paper Subitted Previously To Mantz et al 2009, arXiv:0909.3098 and Mantz et al 2009b, arXiv:0909.309

    Operationalizing the centiloid scale for [18F]florbetapir PET studies on PET/MRI

    Get PDF
    INTRODUCTION: The Centiloid scale aims to harmonize amyloid beta (Aβ) positron emission tomography (PET) measures across different analysis methods. As Centiloids were created using PET/computerized tomography (CT) data and are influenced by scanner differences, we investigated the Centiloid transformation with data from Insight 46 acquired with PET/magnetic resonanceimaging (MRI). METHODS: We transformed standardized uptake value ratios (SUVRs) from 432 florbetapir PET/MRI scans processed using whole cerebellum (WC) and white matter (WM) references, with and without partial volume correction. Gaussian-mixture-modelling-derived cutpoints for Aβ PET positivity were converted. RESULTS: The Centiloid cutpoint was 14.2 for WC SUVRs. The relationship between WM and WC uptake differed between the calibration and testing datasets, producing implausibly low WM-based Centiloids. Linear adjustment produced a WM-based cutpoint of 18.1. DISCUSSION: Transformation of PET/MRI florbetapir data to Centiloids is valid. However, further understanding of the effects of acquisition or biological factors on the transformation using a WM reference is needed

    Altering Host Resistance to Infections through Microbial Transplantation

    Get PDF
    Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in “host” susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter “host” resistance, and a novel means to alter enteric infection and to study host-pathogen interactions

    The implications of three major new trials for the effect of water, sanitation and hygiene on childhood diarrhea and stunting: a consensus statement

    Get PDF
    BACKGROUND: Three large new trials of unprecedented scale and cost, which included novel factorial designs, have found no effect of basic water, sanitation and hygiene (WASH) interventions on childhood stunting, and only mixed effects on childhood diarrhea. Arriving at the inception of the United Nations' Sustainable Development Goals, and the bold new target of safely managed water, sanitation and hygiene for all by 2030, these results warrant the attention of researchers, policy-makers and practitioners. MAIN BODY: Here we report the conclusions of an expert meeting convened by the World Health Organization and the Bill and Melinda Gates Foundation to discuss these findings, and present five key consensus messages as a basis for wider discussion and debate in the WASH and nutrition sectors. We judge these trials to have high internal validity, constituting good evidence that these specific interventions had no effect on childhood linear growth, and mixed effects on childhood diarrhea. These results suggest that, in settings such as these, more comprehensive or ambitious WASH interventions may be needed to achieve a major impact on child health. CONCLUSION: These results are important because such basic interventions are often deployed in low-income rural settings with the expectation of improving child health, although this is rarely the sole justification. Our view is that these three new trials do not show that WASH in general cannot influence child linear growth, but they do demonstrate that these specific interventions had no influence in settings where stunting remains an important public health challenge. We support a call for transformative WASH, in so much as it encapsulates the guiding principle that - in any context - a comprehensive package of WASH interventions is needed that is tailored to address the local exposure landscape and enteric disease burden
    corecore