Abstract

We show how to improve constraints on \Omega_m, \sigma_8, and the dark-energy equation-of-state parameter, w, obtained by Mantz et al. (2008) from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS and the REFLEX galaxy cluster samples with luminosities L> 3 \times 10^{44} erg/s in the 0.1--2.4 keV band. To this aim, we use Tinker et al. (2008) mass function instead of Jenkins et al. (2001) and the M-L relationship obtained from Del Popolo (2002) and Del Popolo et al. (2005). Using the same methods and priors of Mantz et al. (2008), we find, for a \LambdaCDMuniverse,Ωm=0.280.04+0.05andσ8=0.780.05+0.04CDM universe, \Omega_m=0.28^{+0.05}_{-0.04} and \sigma_8=0.78^{+0.04}_{-0.05} while the result of Mantz et al. (2008) gives less tight constraints Ωm=0.280.07+0.11\Omega_m=0.28^{+0.11}_{-0.07} and \sigma_8=0.78^{+0.11}_{-0.13}. In the case of a wCDM model, we find \Omega_m=0.27^{+0.07}_{-0.06}, σ8=0.810.06+0.05\sigma_8=0.81^{+0.05}_{-0.06} and w=1.30.4+0.3w=-1.3^{+0.3}_{-0.4}, while in Mantz et al. (2008) they are again less tight \Omega_m=0.24^{+0.15}_{-0.07}, \sigma_8=0.85^{+0.13}_{-0.20} and w=-1.4^{+0.4}_{-0.7}. Combining the XLF analysis with the f_{gas}+CMB+SNIa data set results in the constraint \Omega_m=0.269 \pm 0.012, \sigma_8=0.81 \pm 0.021 and w=-1.02 \pm 0.04, to be compared with Mantz et al. (2008), \Omega_m=0.269 \pm 0.016, \sigma_8=0.82 \pm 0.03 and w=-1.02 \pm 0.06. The tightness of the last constraints obtained by Mantz et al. (2008), are fundamentally due to the tightness of the fgasf_{gas}+CMB+SNIa constraints and not to their XLF analysis. Our findings, consistent with w=-1, lend additional support to the cosmological-constant model.Comment: 9 pages, 4 Figures. A&A accepted. Paper Subitted Previously To Mantz et al 2009, arXiv:0909.3098 and Mantz et al 2009b, arXiv:0909.309

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/12/2019