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ABSTRACT

How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed

using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations

with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models

reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far

more skillful in simulating the full intensity distribution and genesis locations, including their changes in

response to El Niño–SouthernOscillation. Both IFSmodels project a small change in TC frequency at the end

of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is south-

ward and is likely driven by the southeastward penetration of themonsoon trough/subtropical high circulation

system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the

strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS

also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the

frequency of the more intense storms, which is comparable to the natural variability in the model. Based on

composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of

these storms increase in a future climate, which is consistent with their tendency to developmore to the south,

within an environment that is thermodynamically more favorable for faster development and higher in-

tensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplifi-

cation of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward

shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in

the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the

need for high-resolution modeling in assessing potential changes in TC activity.

1. Introduction

Projecting changes in extreme weather events, includ-

ing tropical cyclones (TCs), remains a critical research

problem of high societal significance. The most intense

TCs occur globally in the western North Pacific (NWPac;

typhoons), in terms of central pressure and possibly sus-

tained wind speed. The highly populated regions sur-

rounding this basin receive the largest number of TC

landfalls in the world. A growing number of numerical

modeling studies have sought to project the future

changes of typhoon statistics using a variety of future sea

surface temperature (SST) distributions and scenarios

from the Intergovernmental Panel on Climate Change
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(IPCC) Special Report on Emissions Scenarios (SRES).

Their focus has been predominantly on changes in ty-

phoon frequency, genesis locations, and tracks [see

review by Knutson et al. (2010)]. While these aspects of

TC activity are important, and work still needs to be

done to understand and reduce the uncertainties asso-

ciated with their future projections, a broader question

is how the intensities of TCs, and typhoons in particular,

are changing (Trenberth 2005). By analyzing the

changes in TC intensity and structural life cycle, an ef-

fort can be made to better understand the connection,

and the associated physical mechanisms, between the

projected changes in the intensity distribution and the

tropical climate change (Pielke et al. 2005; Knutson et al.

2010). The goal of the present study is to make a con-

tribution in this direction.

An effort to take a closer look at structural changes of

future TCs has been mostly limited by insufficient res-

olution of the atmospheric models used for climate

change projections. To properly simulate TC intensity

and structure, the model horizontal grid needs to be fine

enough, preferably less than 5 km, to resolve sharp

gradients in the inner core (e.g., Fierro et al. 2009;

Gentry and Lackmann 2010). Therefore, until recently

such studies (usingmodels with grid spacing on the order

of 10 km or less) have beenmainly restricted to idealized

downscaling experiments conducted for specific regions

and averaged tropical environments (e.g., Knutson and

Tuleya 2004; Hill and Lackmann 2011). Apart from the

added benefits of using a global model, simulations of

a temporal record of sufficient length are desirable in

order to assess the significance of the climate change

signal relative to the internal variability (e.g., Bell et al.

2013) and to increase statistical robustness when com-

paring extremes.

Global atmospheric general circulation models

(AGCMs) have progressed to the point where their

simulations of the present-day TC climatology, includ-

ing intensity distribution and structural evolution, are

becoming more credible (e.g., Manganello et al. 2012;

Murakami et al. 2012b; Strachan et al. 2013). To provide

reliable projections of the future changes in TC activity,

additional requirements, like the ability to simulate

TC variability and the observed trends, need to be met

as well. Two recent studies have indicated that these

may also benefit from increasing model resolution

(Manganello et al. 2012; Strachan et al. 2013). Hence, it

is highly desirable that for the purpose of climate change

projections, AGCMs should be integrated at the highest

resolution feasible.

Our study has capitalized on a successful international

collaboration called Project Athena (Jung et al. 2012;

Kinter et al. 2013). As part of that project’s large suite of

experiments, the European Centre for Medium-Range

Weather Forecasts (ECMWF) Integrated Forecast

System (IFS) weather forecast model was integrated at

resolutions of 125 and 16 km for 47-yr periods covering

the present and future climates (section 2). The combi-

nation of very high 16-km resolution, which is currently

used operationally by ECMWF for medium-range

weather forecasts, and the length of the integrations

makes this dataset quite unique for studying future

changes in TC activity. The focus of this paper is on the

NWPac; results for the North Atlantic are presented

elsewhere.

The goal of the present study is twofold. First, by

evaluating changes in typhoon frequency, genesis loca-

tions and tracks, intensity, and lifetime distributions we

intend to contribute to current projections of the future

change in the typhoon activity using this new dataset

(sections 4 and 5). A special emphasis is given to the

assessment of the model’s skill in reproducing present-

day TC climatology and variability (section 3) and the

significance of the climate change signal relative to the

model’s natural variability. Second, to validate and

better understand the future change in the TC intensity

distribution, we perform a comparison of the intensity

life cycle and structural properties of a large sample

of supertyphoons in the present and future climates

(section 6). Finally, the paper is completed by the dis-

cussion of the results and conclusions (section 7).

2. Methodology

a. Experimental setup

The ECMWF IFS used in this study is described in

detail in Jung et al. (2012) and Manganello et al. (2012).

For the climate change simulations within Project

Athena, the IFS has been integrated at two horizontal

spectral resolutions: T159 and T1279, corresponding

approximately to 125- and 16-km grid spacing, re-

spectively. In the vertical, the IFS has 91 hybrid levels

with a top level at 0.01 hPa. To represent the current

climate, the IFS was integrated continuously for the

period of 1960–2007 forced with the observed records of

SST and sea ice, similar to the Atmospheric Model In-

tercomparison Project (AMIP) protocol (Gates 1992).

The SST and sea ice boundary conditions are the same

1.1258 data used for the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40; Uppala et al. 2005). These data are

monthly before 1990 and weekly starting in 1990, and

are interpolated to daily values and in space to the IFS

grid at each resolution. Beginning in 2002, daily SST and

sea ice are from the operational ECMWF analysis.
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The future climate simulations were carried out fol-

lowing the time-slice (TS) approach (Bengtsson et al.

1996). The model was integrated for the period of 2070–

2117 where future SST and sea ice forcing was con-

structed by adding the difference in the annual cycle of

SST and sea ice between 2065–75 and 1965–75, taken

from the IPCC Fourth Assessment Report (AR4) in-

tegration of the Community Climate System Model,

version 3.0 (CCSM3.0), to the 1960–2007 observed re-

cord. The 1965–75 (2065–75) data are the average of

8 (6) ensemble members of the twentieth-century (A1B

emissions scenario) simulations. In addition to modified

boundary conditions, the atmospheric greenhouse gas

concentrations were altered to follow the IPCC A1B

scenario until the year 2100 and held constant at their

2100 values thereafter. More details on the IFS AMIP-

style and TS experiments are provided in Jung et al.

(2012). For the analysis presented in section 5, both IFS

T1279 and T159 data are reduced to a common N80 full

Gaussian grid resolution.

b. Identification and tracking of tropical cyclones

The initial TC identification and tracking is similar to

that used in Bengtsson et al. (2007a) and is based on the

tracking algorithm of Hodges (1994, 1995, 1999). Vor-

tices are detected in the NH as maxima in the 6-hourly

850-hPa relative vorticity field with values greater than

5 3 1026 s21 (at a spectral resolution of T42). A post-

tracking lifetime filter of 2 days is applied and a mini-

mum displacement filter of 108 (;1000 km) over the

lifetime of the vortex. The TC identification criteria (see

Table 1) are applied to the raw tracks to separate the

simulated TCs from other synoptic systems. As a result,

model TCs tend to include both earlier and later stages

of a life cycle than the observed storms. To reduce data

processing and storage requirements, TC analysis is

performed for May–November (MJJASON), which

encompasses 90% of the annual typhoon activity (Chan

and Liu 2004). Further details of the TC identification

and tracking can be found in Manganello et al. (2012).

c. Observational best-track data

To compare simulated typhoons with those observed,

we use data from the International Best Track Archive

for Climate Stewardship (IBTrACS, version v02r01;

Knapp et al. 2010). IBTrACS uses 10-min average wind

speed at 10m elevation for themaximum sustained wind

(MSW) estimate, which closely corresponds to the

model definition of MSW (see Table 1). We also use the

same conversion coefficient between 1- and 10-min

winds equal to 0.88 (see Knapp et al. 2010) to adjust

TC thresholds. Thus, the ‘‘tropical storm’’ threshold of

17.5m s21 (34kt) defined for the 1-min MSW becomes

15.4m s21 (30kt) for the 10-min MSW. For the direct

comparison with model-simulated tracks, IBTrACS data

are processed by applying criteria 1 and 4 of Table 1.

It must be noted that there are substantial interagency

differences in the MSW and minimum sea level pressure

(SLP) estimates contributed to the IBTrACS dataset,

particularly for the NWPac basin (e.g., Knapp and Kruk

2010). The studies of Knapp and Kruk (2010), Song et al.

(2010), and Knapp et al. (2013) have specifically high-

lighted the dependence of the uncertainty in intensity, as

well as some integral measures of the TC activity, on the

observed TC intensity with large discrepancies for cate-

gory 4–5 supertyphoons (Song et al. 2010). Since themean

values of intensity provided by IBTrACS are used in our

study, these factors need to be kept in mind. However, we

do not believe that the main results of section 3 would

change substantially as a consequence of this uncertainty.

TABLE 1. TC identification criteria.

Horizontal resolution of the IFS

T1279 T159

1. Surface (10-m) wind speed threshold (m s21; intensity threshold) 15.4a 11.9b,c

2. Difference in vorticity between 850 and 250 hPa

(a warm core condition)

Larger than zero for both resolutions

3. Vorticity max at each level between 850 and 250 hPa (a coherent

vertical structure condition)

Applied to both resolutions

4. Criteria 123 are achieved for four consecutive time steps (24 h) Applied to both resolutions

5. Cyclogenesis (first identification) occurs between 08–208N
over land and 08–308N over oceans.

Applied to both resolutions

a Observed tropical storm threshold for 10-min maximum sustained wind (MSW) is used. No correction for model time step is made for

T1279 (10-min time step).
b Observed tropical storm threshold for 10-minMSW is used after the correction for model time step. Time step for T159 is 1 h. One-hour

average winds are converted to 10-min winds using coefficient 1.03 (Harper et al. 2009).
c Surface wind speed threshold is further adjusted for model resolution based on Fig. 2 in Walsh et al. (2007). Values derived from

a selection of Hurricane Research Division (HRD) wind analysis are used.
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3. Tropical cyclone activity in the present-day
(AMIP-style) simulation

To assess the credibility of the simulated future

changes in TC activity, we start with a brief evaluation of

the model’s skill in reproducing present-day TC clima-

tology and variability.

a. Tropical cyclone climatology

Seasonal mean TC frequency is significantly higher

than observed for both models (see Table 2), which is

consistent with the results of Manganello et al. (2012).

This distinct IFS bias is likely a consequence of a set of

environmental conditions associated with overly strong

precipitation over the NWPac warm pool area. En-

hanced precipitation and related convergence errors are

associated with positive relative vorticity errors to the

northwest (;108–258N) and an increase in the vertical

wind shear (VWS) to the south (not shown). A deeper

monsoon trough and enhanced positive vorticity favor

higher convective activity. The relative humidity is also

elevated in the region, as amplified convective activity

increases the supply of water vapor in the atmosphere.

If, on the other hand, the total seasonal TC counts are

considered by storm category (see Table 2), it becomes

clear that the positive bias in the simulated TC frequency

in bothmodels is entirely due to the overprediction of the

weakest systems (tropical storms). The T1279 TC fre-

quency is similar to the observed for storms of categories

1–2, although lower for categories 3–5. The T159 model

significantly underpredicts storms of all categories irre-

spective of the classification system used (see below).

Although operational classification by central pressure

was ended in the 1990s, it is worthwhile to comparemodel

results with observations using this approach.As opposed

to minimum central pressure, models do a much poorer

job in simulatingmaximum surface wind as a result of, for

example, insufficient model resolution or deficient pa-

rameterizations of surface momentum flux (e.g., Powell

et al. 2003). It is interesting that using this classification

the T1279 mean TC frequency is quite close to that

observed for both TC category groups (see Table 2).

The seasonal mean power dissipation index (PDI),

which is an integral measure of the TC activity,1 is well

within the limits of the observational estimate for the

T1279 model and considerably lower for the T159 (see

Table 2). Both models underestimate mean peak in-

tensity and somewhat overestimate mean lifetime of the

storms. The latter is largely due to the tracking pro-

cedure (seeManganello et al. 2012; Strachan et al. 2013).

Intensity distributions (Figs. 1a,b) show a fairly good

correspondence between the frequency of occurrence of

the simulated and observed TCs at the high end of the

intensity scale for the T1279 model only. At the low end,

the storms are overpredicted, particularly for the T159

model, which is consistent with the results in Table 2.

The overall correspondence for minimum SLP is much

better than for maximum surface wind speed, although

some simulated storms attain lower SLP than observed.

TABLE 2. Climatological mean and standard deviation (in parenthesis) of the TC frequency, power dissipation index, mean peak

intensity, andmean lifetime of TCs for theMJJASON season of 1975–2007 for IBTrACS (OBS) and IFSAMIP simulations. In addition to

the total TC frequency, data are separately shown for tropical storms (TS) and storms of categories 1–2 (CAT 1–2) and categories 3–5

(CAT 3–5). Units for TC frequency are numbers per season. Differences between the model results and the corresponding observational

values that are statistically significant at the 95% confidence level, using a two-sided Student’s t test, are shown in boldface. Degrees of

freedom are computed taking into account serial correlation in the time series.

OBS IFS T1279 IFS T159

TS CAT 1–2 CAT 3–5 TS CAT 1–2 CAT 3–5 TS CAT 1–2 CAT 3–5

Total TC frequency 22.6 (3.6) 33.5 (5.3) 26.2 (5.5)

TC frequency per storm category

based on surface wind speed*

8.3 (2.4) 7.2 (2.7) 7.2 (2.6) 20.5 (4.2) 8.1 (2.2) 4.9 (2.0) 20.6 (5.1) 5.6 (2.1) 0.03 (0.17)

TC frequency per storm category

based on central pressure**

6.9 (2.1) 4.8 (2.1) 10.7 (3.4) 18.3 (3.7) 5.0 (2.1) 10.1 (2.9) 22.4 (5.2) 1.9 (1.3) 1.9 (1.3)

Power dissipation index

(1011m3 s22)

4.2 (1.4) 3.5 (1.2) 0.72 (0.19)

Mean peak intensity (m s21) 36.3 (3.1) 29.2 (1.8) 19.2 (1.0)

Mean lifetime (days) 10.2 (1.4) 12.5 (1.4) 11.7 (1.7)

*Classification is based on Saffir–Simpson scale using maximum sustained surface wind speed (e.g., Landsea 1993). Wind speed

thresholds are adjusted for the 10-min average wind using 0.88 scaling (see Knapp et al. 2010) and further adjusted for model resolution

for IFS T159 version only as in Manganello et al. (2012).

**Classification is based on Saffir–Simpson scale using central pressure (e.g., Landsea 1993).

1 PDI is defined as the cube of the peak surface wind at any given

time in a storm integrated over its lifetime (Emanuel 2005).
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This has also been found in Manganello et al. (2012),

which contains some discussion of this result.

The genesis density in the T1279 model has a distri-

bution similar to that observed, except for a slight

northwest shift of the highest concentration region of

cyclogenesis likely related to the precipitation bias de-

scribed above (not shown). This deficiency is mostly due

to the weakest storms, as the genesis density computed

only for typhoons, which are equivalent to hurricanes of

category 1 or higher, is realistic with the centers located

to the south/southeast of the overall distribution

(Figs. 2a,b). The track density for these stronger storms

in the T1279 model is also quite comparable to the

observed (Figs. 2d,e). The corresponding distributions

for the T159 model are much less coherent and could be

deemed unrealistic (Figs. 2c,f). The genesis potential

index analysis, which is able to separate the effect of the

large-scale fields on the cyclogenesis from the in situ

resolution effect, produces similar results for both ver-

sions of the model (not shown). This suggests that large

deficiencies in the simulation of genesis density in the

T159 model are primarily a result of low resolution.

These results are in agreement with Walsh et al. (2013),

who also found that the pattern of cyclone formation

improves with the model resolution increase.

In summary, the T1279 model shows a good corre-

spondence with observations in terms of the various TC

activity metrics presented above, especially for the

‘‘hurricane’’ strength TCs that will be at the center of

further analysis. In contrast, while the overall perfor-

mance of the T159 model is perhaps satisfactory con-

sidering its coarse resolution, it is quite poor in terms of

these stronger storms.

b. Tropical cyclone variability

1) SEASONAL CYCLE AND INTERANNUAL

VARIABILITY

The seasonal cycle of the TC frequency is fairly re-

alistic in the T1279 model with errors largely confined to

the beginning and the end of the season (not shown). The

T159 model has much larger errors, where monthly TC

frequency increases monotonically throughout the sea-

son instead of displaying a peak in August–September.

Correlations of the observed and simulated seasonal

mean TC frequencies are quite low for both models but

show much higher values for the PDI, which could in

principle capture more of the climate influence (see

Table 3). Although there is a general consensus that the

observed trend in theNWPac TC frequency over the last

35 years is insignificant (e.g.,Wu et al. 2008; Knutson et al.

2010), estimates of the trend in the PDI or other similar

integral quantities range from a 35% increase (Emanuel

2007) to an insignificant decrease (Chan and Liu 2004;

Klotzbach 2006; Kossin et al. 2007; Wu et al. 2008). The

simulated trends in the TC frequency and PDI are small

FIG. 1. (top) Frequency distributions of (a) themaximumattained 10-mwind speed and (b) theminimumSLP from

the IBTrACS data (OBS; black bars), AMIP T1279 (red bars), and AMIP T159 (green bars) for MJJASON of 1975–

2007. Inset plots show the tail of the distributions. (bottom) Future change in the frequency distributions of (c) the

maximumattained 10-mwind speed and (d) theminimumSLP for TS andAMIP at T1279 (red bars) and T159 (green

bars) based on 47 yr of data.
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and insignificant for both versions of the model (not

shown). Having only one realization, it is difficult to

make any definite conclusions regarding the skill of the

model in reproducing interannual variability and long-

term changes. For instance, during 1990–2007 the cor-

relations of the detrended TC frequency and PDI

increase sharply to 0.6 (0.6) and 0.63 (0.55) respectively

for the T1279 (T159) model.

Although El Niño–Southern Oscillation (ENSO) has

a major influence on the TC activity in the NWPac [see

section 3b(2)], year-to-year variations in the location

and strength of the monsoon trough are also known to

impact the intensity and lifetime of typhoons (e.g., Chia

and Ropelewski 2002). To reduce sampling errors, we

show this influence as a change in the normalized cu-

mulative frequency of occurrence of the maximum at-

tained 10-m wind speed and TC lifetime for relatively

active and inactive years during 1975–2007.2 The

FIG. 2. (left) Genesis and (right) track densities of tropical cyclones equivalent to hurricanes of categories 1–5 as

number density per season per unit area equivalent to a 58 spherical cap for (a),(d) IBTrACS (OBS), (b),(e) AMIP

T1279, and (c),(f) AMIP T159 based on MJJASON of 1975–2007.

2 These years are computed based on the observed (IBTrACS)

detrended PDI time series and include 1976, 1982, 1987, 1990, 1991,

1992, 1994, 1997, and 2004 for active years and 1975, 1977, 1978,

1988, 1993, 1995, 1998, 1999, and 2007 for inactive years.
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observed distributions show a shift toward higher in-

tensity and lifetime values during the active years

(Figs. 3a,b). Both IFS models reproduce this tendency

but strongly underestimate themagnitude of the change.

The bulk of the intensity response in the T159 model is

also confined to very low intensities, which is clearly due

to its low resolution (see Fig. 1a). For the T1279 model,

the shape of this distribution becomes much more re-

alistic. The overall weakness of the simulated response

could be attributed in part to sampling issues (a small

number of years in each category and only one real-

ization of the present-day climate), although insufficient

resolution could be a limiting factor as well. It appears

that this deficiency is quite common among the current

high-resolution models (e.g., Zhao and Held 2010) and

even occurs in some TC forecasting models (Bender

et al. 2010). In the case of lifetime distributions, the

differences in the tracking procedures could also be

important. Additionally, the total (forced and unforced)

TC intensity and lifetime variability in the model is

found to be quite low as well: the respective change in

the cumulative frequency distributions of these quanti-

ties is only about half of the observed (Figs. 3a,b; see

dashed lines with open circles).

2) RELATIONSHIP WITH ENSO

ENSO has a dominant effect on the TC activity in the

NWPac because of its large influence on the strength

and position of the monsoon trough, as well as VWS and

thermodynamic conditions in the region (e.g., Wang and

Chan 2002; Chan and Liu 2004; Camargo et al. 2007).

During the positive ENSO phase, the monsoon trough

tends to be stronger and extends farther to the southeast.

Additionally, in the southeastern part of the region,

VWS decreases, and the mean ascending motion and

moisture content of the midtroposphere increase. Op-

posite changes take place in the northwestern part of the

domain. These climatological variations in concert lead

to southeast-to-northwest shifts in the TC genesis during

ENSO events (Chia and Ropelewski 2002; Wang and

Chan 2002) that do not necessarily result in large

changes in the TC counts, and is reflected in the low

correlation between the observed TC frequency and the

Niño-3.4 index (see Table 4). On the other hand, ENSO

has a much stronger influence on the TC intensity and

lifetime: during El Niño events, TCs tend to be more
intense, with longer lifetimes and more recurving tra-
jectories (Wang and Chan 2002; Camargo and Sobel

2005), which leads to a high correlation between the PDI

and the Niño-3.4 index (Table 4). Both versions of the

IFS reproduce these connections fairly well, showing

low correlations for the TC frequency and much higher

correlations for the PDI (Table 4). The tendency of the

observed TCs to be more intense and long-lived during

El Niño versus La Niña events is also evident in Figs. 3c

and 3d. [ENSO events are computed based on the May–

November average monthly Niño-3.4 index obtained
from the National Center for Atmospheric Research
(NCAR)Climate andGlobal Dynamics Division (CGD)
Climate Analysis Section (http://www.cgd.ucar.edu/cas/
catalog/climind/Nino_3_3.4_indices.html).]3 As in the

previous section, both versions of the IFS reproduce this

tendency but strongly underestimate the magnitude of

the change. (In the T159 model, the intensity response

could be consideredmarginal. PDI variations seem to be

primarily driven by the lifetime changes in this model.)

Geographical changes in the TC genesis locations

during ENSO events are shown in more detail in Fig. 4.

Consistent with the changes in the environmental con-

ditions described above, genesis density tends to increase

(decrease) to the east (west) of 1508E longitude (Fig. 4a).

The T1279 model reproduces this shift quite well, al-

though the center of the decreased genesis density is

somewhat to the southeast of the observed (Fig. 4b). The

T159model, however, does not simulate the clear dipole

pattern: large positive changes occur both around the

date line and west of 1508E, whereas negative changes

are weak and occur in multiple locations (Fig. 4c).

4. Projected changes in the tropical cyclone activity
at the end of the twenty-first century:
Comparison of the time-slice and AMIP-style
simulations

a. Tropical cyclone frequency, intensity, and power
dissipation index

Both IFS models project a small and insignificant

change in the NWPac TC frequency toward the end of

the twenty-first century (see Table 5). However, the

TABLE 3. Correlation coefficients between the seasonal mean

simulated and observed (IBTrACS) TC frequency and PDI for

MJJASON of 1975–2007. One-tailed p values are given in paren-

thesis. Boldface (italic) values indicate that the correlation co-

efficient is statistically significant at the 95% (90%) confidence

level using a one-sided Student’s t test and taking into account

serial correlation in the time series.

IFS T1279 IFS T159

TC frequency 0.32 (0.0384) 0.17 (0.1787)

Power dissipation index 0.48 (0.0030) 0.40 (0.0098)

3Years include 1977, 1982, 1987, 1991, 1993, 1994, 1997, 2002,

2004, and 2006 for El Niño years and 1975, 1978, 1984, 1985, 1988,
1989, 1998, 1999, 2000, and 2007 for La Niña years.
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FIG. 3. Change in the cumulative frequency distributions of (left) the maximum attained 10-m wind speed and

(right) the TC lifetime for (a),(b) active vs inactive years and (c),(d) El Niño vs La Niña years based onMJJASON of
1975–2007 for the IBTrACS data (OBS; black line), AMIP T1279 (solid red line, closed circles) and AMIP T159

(solid green line, closed circles). Dashed lines with open circles in (a) and (b) show corresponding changes based on

the individual model’s definition of active/inactive years. (e),(f) As in (a),(b), but for future vs present climate (TS vs

AMIP) based on 47 yr of data.
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T1279 IFS also shows a significant reduction in the fre-

quency of the tropical storms and a significant increase

in the typhoon counts, particularly for categories 3–5

(;70% increase; Table 5). These results are also re-

flected in the changes of the TC intensity distributions

(Figs. 1c,d), which are found to be statistically significant

using a x2 test only for the T1279 model. In contrast, the

T159 model produces a weaker and statistically in-

significant response in the TC intensity, which is likely

a consequence of its coarse resolution (e.g., Bengtsson

et al. 2007b; Murakami and Sugi 2010). The tendency

toward stronger storms in a warmer climate in the T1279

IFS is in general agreement with a number of other high-

resolution studies [see the review inKnutson et al. (2010)],

and a roughly 10% increase in the fraction of typhoons in

this model (Fig. 3e) is consistent with the findings of, for

example, Zhao et al. (2009). Moreover, in this study we

also find that future changes in the TC intensities pro-

jected by the T1279 model are comparable with the range

of intensity variations due to the model’s natural vari-

ability (forced plus unforced; Figs. 3a,e). To understand

the underlying causes of such a large intensity response in

the T1279 model is the focus of later in the paper.

Consistent with the change in the intensity distributions,

meanpeakTC intensity in theT1279 IFS increases by 12%

in a warmer climate contributing to a 51% increase in the

PDI (Table 5), in response to about 2.2-K SST warming

over the tropical NWPac (see section 5a). Notably, the

mean increases in the PDI and mean peak intensity

TABLE 4. Correlation coefficients between the seasonal mean TC

frequency and PDI and the Niño-3.4 index for MJJASON of 1975–
2007. One-tailed p values are given in parenthesis. Boldface (italic)

values indicate that the correlation coefficient is statistically signifi-

cant at the 95% (90%) confidence level using a one-sided Student’s

t test and taking into account serial correlation in the time series.

OBS IFS T1279 IFS T159

TC frequency 0.13 (0.2381) 0.32 (0.0340) 0.34 (0.0253)

Power dissipation

index

0.68 (0.0001) 0.42 (0.0086) 0.39 (0.0134)

FIG. 4. Differences in the composites of the TC genesis density

betweenEl Niño and LaNiña years scaled by 0.5, for (a) IBTrACS,
(b) AMIP T1279, and (c) AMIP T159 for MJJASON of 1975–2007.
Contour interval is 0.15. Positive (negative) contours are solid

(dashed) with the starting value of 0.15 (20.15). Shading represents

differences significant at the 95% confidence level using a permu-

tationMonte Carlo approach (for details, see Bengtsson et al. 2006;

Hodges 2008).

TABLE 5. Future change (TS minus AMIP) and future fractional change (in parentheses) in the seasonal mean TC frequency, power

dissipation index,mean peak intensity, andmean lifetime of TCs based on theMJJASONseasonof the 47-yr IFSAMIP andTS simulations.

In addition to the total TC frequency, data are separately shown for tropical storms (TS) and storms of categories 1–2 (CAT 1–2) and

categories 3–5 (CAT 3–5). Differences between the model results that are statistically significant at the 95% confidence level, using a two-

sided Student’s t test, are shown in boldface. Degrees of freedom are computed taking into account serial correlation in the time series.

IFS T1279 IFS T159

TS CAT 1–2 CAT 3–5 TS CAT 1–2 CAT 3–5

Total TC frequency, counts per season 12.2 (17%) 21.1 (24%)

TC frequency per storm category

based on surface wind speed*

22.4 (212%) 11.3 (117%) 13.3 (170%) 20.8 (24%) 20.4 (29%) 10.2 (1450%)

Power dissipation index

(1011m3 s22)

11.8 (151%) 0

Mean peak intensity (m s21) 13.4 (112%) 20.03 (20.2%)

Mean lifetime (days) 10.02 (10.1%) 10.06 (10.5%)

* Classification is based on Saffir–Simpson scale usingmaximum sustained surfacewind speed (e.g., Landsea 1993).Wind speed thresholds

are adjusted for the 10-min averagewind using 0.88 scaling (seeKnapp et al. 2010) and further adjusted formodel resolution for IFST159

version only as in Manganello et al. (2012).
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substantially exceed their standard deviations, which are

1.23 1011m3 s22 and 2.1ms21, respectively, in the AMIP

and roughly the same in the TS simulation. In contrast,

mean TC lifetime and lifetime distribution remain virtu-

ally the same for bothmodels (Table 5, Fig. 3f). Compared

to its high-resolution version, the TC activity response to

climate change in the T159 IFS is quite benign. The T1279

results here are quite similar to the findings of Stowasser

et al. (2007) based on a 0.58 regional model simulation.

They also report a 50% increase in the PDI, which is

dominated by an increase in the frequency of the most

intense storms, as a change in the lifetime and increase in

the total TC frequency are insignificant. However, in their

study, the warming scenario is quite severe, resulting in

about 3-K surface warming in the tropical NWPac. Similar

results are also reported by Yamada et al. (2010), who

used a 14-km global cloud-system-resolving model.

b. Genesis locations and tracks

In response to future climate change, a clear south-

ward (southwestward) shift of the main genesis regions

takes place in the T1279 (T159) IFS, with a smaller and

less significant increase in the genesis density over the

South China Sea (Fig. 5), which overall is consistent with

a small change in the basinwide seasonal mean TC fre-

quency in both models. In turn, both models project

track density increases along the southwestern corridor

from as far as the date line for T1279 to Southeast Asia

and decreases in the center of the basin (Fig. 6). Based

on the T1279 IFS, track density also increases along the

northwestern corridor from Japan to high latitudes.

The above patterns of change in tracks are consistent

with the results of Wu and Wang (2004), who examined

the sensitivity of track changes to the shifts in the TC

formation locations. There is also some similarity with

the work of Bengtsson et al. (2006) where they report an

equatorward translation of tracks in the eastern part of

the domain and into the central Pacific. However,

a number of recent studies suggest rather a substantial

eastward migration of storms leading to a reduction in

genesis frequency over most of the NWPac and an in-

crease in the central Pacific or farther east of the date

FIG. 5. Genesis densities as number density per season per unit area equivalent to a 58 spherical cap for (a) AMIP

T1279 based on MJJASON of 1961–2007, (b) TS T1279 based on MJJASON of 2071–2117, and (c) the difference

between TS T1279 and AMIP T1279. (d)–(f) As in (a)–(c), but for T159 resolution. Contour interval is 0.1. Positive

(negative) contours are solid (dashed) with the starting value of 0.1 (20.1). Gray (light blue) shading shows dif-

ferences significant at the 95% (90%) confidence level using a permutation Monte Carlo approach (for details, see

Bengtsson et al. 2006, Hodges 2008).
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line, possibly with some poleward shift (Li et al. 2010;

Murakami et al. 2011; Murakami et al. 2012a,b; Zhao

andHeld 2012).Wewill attempt to further address these

differences in section 7.

5. Impact of future changes in the large-scale
atmospheric conditions

We find that future changes in the large-scale atmo-

spheric conditions that are known to have a direct effect

on tropical cyclogenesis and TC development in the

NWPac largely stem from the response of the hydro-

logical cycle in the tropics to the prescribed pattern of

SST warming. We therefore start this analysis by ex-

amining changes in the tropical precipitation and cir-

culation in response to climate change.

a. SST forcing and the change in the tropical
precipitation

The prescribed future changes in the seasonal mean

SST in our TS experiments (Fig. 7a) have broad simi-

larities with the multimodel projection performed for

the IPCC AR4 using the same A1B emissions scenario

(e.g., Vecchi and Soden 2007a). Although the maximum

warming is also in the equatorial Pacific, it extends far-

ther to the west with the largest SST anomalies occur-

ring west of the date line. In addition, relatively high SST

values are found over the Maritime Continent and the

eastern part of the north Indian Ocean. In this respect,

SST forcing in our study bears less resemblance to an El

Niño–like forcing used in a number of recent works (e.g.,

Murakami et al. 2011, 2012b). The net effect of these

FIG. 6. As in Fig. 5, but for track density. Contour interval is 0.6. Positive (negative) contours are solid (dashed)

with starting values of 0.6 (20.6). Gray (light blue) shading shows differences significant at the 95% (90%) con-

fidence level using a permutation Monte Carlo approach (for details, see Bengtsson et al. 2006; Hodges 2008).
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spatial inhomogeneities (i.e., neglecting regionally uni-

formwarming) is an eastward penetration of the NWPac

warm pool, its enhancement at the equator between

about 1508E and the date line, and a weakened equa-

torial cold tongue in the future relative to the present

climatology (not shown).

The IFS at T1279 simulates a future increase in rain-

fall largely confined to the central equatorial Pacific

(Fig. 7b) similar to the results of Vecchi and Soden

(2007b), who examined the IPCC AR4 multimodel en-

semble mean response. The magnitude and location of

this increase is in fact comparable to the ones during an

El Niño event, which is found to be quite realistic (not
shown). In turn, the low-level circulation exhibits an
enhanced convergence over the central equatorial Pa-
cific and anomalous divergence over the broad region to
the west (Fig. 7b), extending to the north Indian Ocean,

suggesting respective changes in the convective mass

flux. Using 500-hPa pressure velocity (v) as a proxy for

convective mass flux4 [see Vecchi and Soden (2007b) for

more details], we find that deep convective activity is

likely reduced over most of the tropical NWPac except

for the equatorial region between about 1508E and the

date line where there is a large and statistically signifi-

cant increase in the midtropospheric vertical ascent (see

Fig. 8b). This appears to have a large influence, both

direct and indirect, on the southward shift of the TC

genesis locations in the high-resolution version of the

IFS (see section 5b). In contrast, precipitation response

in the lower-resolution version of the IFS is quite dif-

ferent in the western part of the domain where it closely

follows the pattern of local SST change (not shown),

which partly determines the southwest preference in the

shift of genesis locations and tracks in this model.

b. Regional-scale changes in the environmental fields

Here we extend our analysis of the climate change

induced shifts in genesis to include other large-scale

fields that are known for their ability to influence spatial

and temporal variability of TC formation.

For the IFS at T1279, the southward shift in the main

genesis regions shows a connection to the patterns of

change in the 850-hPa relative vorticity, 500-hPa v, and

700-hPa relative humidity (Figs. 5c and 8, Table 6).

Specifically, an increase in genesis to the south is con-

sistent with the enhanced low-level vorticity due to the

FIG. 7. (a) Prescribed SST forcing (K) as a difference between theMJJASONmean SST from

the TS and AMIP experiments. Contours show the difference between the local and the

tropical mean (208S–208N) SST change. Contour interval is 0.3K, positive (negative) contours

are solid (dashed), zero contour is white. (b) MJJASON mean projected future change in the

total precipitation rate (mmday21; shading and thin black contours) and the 850-hPa velocity

potential (106m2 s21; thick blue contours) for T1279 IFS based on the 47 yr of data. Contour

interval is 0.5mmday21 and 0.1 3 106m2 s21, positive (negative) contours are solid (dashed)

with a starting value 0.5 (20.5)mmday21 and 0.1 (20.1) 3 106m2 s21. Shading shows pre-

cipitation changes that are statistically significant at the 95% confidence level using a two-sided

Student’s t test.

4 Principal results are insensitive to the choice of other

midtropospheric levels (e.g., 400 or 700 hPa).
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southeastward extension of the monsoon trough

(Fig. 8a), stronger deep convective activity (Fig. 8b), and

midtropospheric moistening (Fig. 8c) associated with

the increased precipitation in the central equatorial

Pacific (Fig. 7b). In turn, the depressed TC genesis to the

north is likely linked to the anomalous anticyclonic

vorticity, weaker convection, and reduced relative hu-

midity in the east. Although VWS changes are not cor-

related with the overall shift in the genesis density (see

Table 6), in general agreement with the results of Zhao

and Held (2012), the broad region of weakened VWS

of total wind south of about 158N (not shown) is con-

sistent with the enhanced genesis. Potential intensity

(PI) changes show little connection with the genesis

changes (Fig. 8d, Table 6), as also reported inMurakami

et al. (2011, 2012b) and Zhao and Held (2012). PI

changes closely resemble the regional SST anomalies,

and the largest increase in PI takes place too far south to

have a direct impact on the TC genesis, both in agree-

ment with Vecchi and Soden (2007a).

Geographical shifts in the TC genesis in a future cli-

mate have also been linked to a change in the activity of

synoptic-scale tropical disturbances due to the back-

ground vertical shear of zonal wind and low-level di-

vergence changes (e.g., Li et al. 2010). In our study, we

find a marginal strengthening of the easterly wind shear

FIG. 8. MJJASON mean projected future change (TS 2 AMIP) in (a) 850-hPa relative vorticity (1026 s21),

(b) negative of 500-hPa v (1022 Pa s21), (c) 700-hPa relative humidity (%), (d) potential intensity (m s21),

(e) vertical shear of zonal wind (m s21; no absolute value taken), and (f) track density of synoptic-scale tropical

disturbances (number density per season per unit area equivalent to a 58 spherical cap) for IFS at T1279 based on

the 47-yr simulations. In (a)–(e) shading shows changes significant at the 95% confidence level using a two-sided

Student’s t test. In (f) contour interval is 1.0. Positive (negative) contours are solid (dashed) with the starting value

of 1.0 (21.0).
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over the region and a weakening to the north (Fig. 8e).

This pattern of change along with the enhanced low-

level convergence and divergence over the corre-

sponding areas (Fig. 7b) are quite consistent with the

southward displacement in the synoptic-scale activity

(Fig. 8f).5We also find that changes in these atmospheric

conditions as well as the number of preexisting distur-

bances are correlated with the TC genesis density re-

sponse in the region (see Table 6).

Based on these results, it follows that the climate

change induced southward shift in the tropical cyclogen-

esis in the IFS at T1279 likely occurs in response to 1) the

strengthening of the monsoon trough environment in the

southeastern part of the domain and the southward pen-

etration of the NWPac subtropical high, 2) the southward

shift in the activity of the synoptic-scale tropical dis-

turbances, and 3) the amplification of deep convective

activity over the central equatorial Pacific. In contrast,

changes in the TC formation locations in the T159 model

are more sensitive to the large-scale shifts in the VWS

pattern (not shown) and do not appear to have any re-

lationship with the indicators of the change in the activity

of the synoptic-scale tropical disturbances (see Table 7).

6. Composite analysis of the tropical cyclone
intensification and structural changes

Here, we return to the question of TC intensity changes

in a future climate. Our focus will be the comparison of

the most intense TCs in the AMIP and TS simulations

aimed at identifying changes in the statistical properties

of this category of storms and physical processes that

govern their evolution. To do this we use a compositing

technique to create a sample of the most intense ty-

phoons in both simulations. Owing to the long in-

tegration time of the AMIP and TS experiments, we are

able to isolate approximately 50 (100) supertyphoons of

category 4 (category 3) or higher in the T1279 model.

The storms are sampled following the methodology

described in Bengtsson et al. (2007b) at the time when

they achieve their maximum intensity, as indicated by

the lifetimemaximum 10-mwind speed [seeManganello

et al. (2012) for more detail]. The characteristics of these

TCs are given in Table 8. The following analysis is pri-

marily based on the 50-storm composites; results from

the 100 storms are reported where appropriate. We

emphasize that the size of these supertyphoon com-

posites is unique for global climate change modeling

studies at such high (16 km) resolution.

The most intense supertyphoons in the AMIP T1279

simulation originate south of 208N and between 1208E
and the date line (Fig. 9a), similar to the observed

sample (not shown). In a future climate, their genesis

shifts southward and eastward (Fig. 9b) in agreement

with an overall pattern of change (Fig. 5c). As a result,

track density increases in the southwestern corridor and

the northwestern one east of Japan, and decreases in the

center of the basin and over the South China Sea (not

shown). These changes are more pronounced when the

100-storm composites are compared. Despite the geo-

graphical shift in their formation, future supertyphoons

attain their maximum intensity in about the same region

east of the Philippines (Figs. 9a,b).

a. Intensity life cycle

An upward shift in the frequency of the most intense

TCs under climate change could be brought about by

several factors that are not necessarily mutually exclu-

sive: 1) an increase in the duration of storms, as longer-

lived storms have more time to intensify; 2) a higher

intensification rate; and 3) an increase in the PI or de-

crease in the VWS along the tracks, which can directly

lead to higher lifetime peak intensities (Emanuel 2000;

TABLE 6. Pattern correlation coefficients between the future

change in the TC genesis density and the projected change in the

selected atmospheric fields for the IFS T1279 based on the

MJJASON season of the 47-yr AMIP and TS simulations. (Values

for VWS and PI are not shown since they explain less than 10% of

the variance in the TC genesis density change.) Correlation co-

efficients are computed over the domain of 58S–308N, 1008E–
1708W and listed in the descending order.

IFS T1279

850-hPa relative vorticity 0.44

Track density changes of the synoptic-scale

propagating tropical disturbances

0.43

Total precipitation 0.42

Negative v at 500 hPa* 0.34

Negative of the vertical shear of zonal wind

(no absolute value taken)

0.32

700-hPa relative humidity 0.31

* Data are based on 28 and 30 nonconsecutive seasons out of 47 for

the AMIP and TS simulations respectively.

TABLE 7. As in Table 6, but for IFS T159. Values for total pre-

cipitation, VWS, 700-hPa relative humidity, PI, track density

changes of the synoptic-scale propagating tropical disturbances

and vertical shear of zonal wind are not shown since they explain

less than 10% of the variance in the TC genesis density change.

IFS T159

850-hPa relative vorticity 0.37

5We define this measure here as a track density of all identi-

fied low-level tropical disturbances that last at least 2 days and

travel farther than 1000 km with the exception of the TCs (see also

section 2b).
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Zeng et al. 2007, and references therein). In addition to

other factors described below, PI and VWS could also

alter the storm intensification rate (e.g., Nolan et al.

2007; Zeng et al. 2007). [Storm translation is also found

to affect TC intensities and intensification (Zeng et al.

2007) but one aspect of this influence by means of ocean

interaction is not captured in our study, and therefore

storm translation is not examined here.]

Despite the southward shift of storms in a future climate

(T1279 model), their overall lifetime distribution does not

change much (Fig. 3f). Moreover, the average time it

takes a supertyphoon to reach peak intensity is actually

shorter in a future climate, which implies a faster growth

rate: 11.7 (12.0) days in the TS simulation compared to

13.8 (13.7) days in the AMIP based on the 50-storm (100

storm) composites, where the differences are statistically

significant at the 95% confidence level in both cases. It

follows that changes in the storm duration do not explain

the higher frequency of supertyphoons in a future climate.

To evaluate the intensification rate, we compare the

temporal evolution of the composited storms by con-

structing intensity life cycles, both in terms of the maxi-

mum10-mwind speed andminimumSLP (Fig. 10). To do

so, each storm is centered on the time when it achieves

maximum intensity in terms of the 10-m wind speed.

Simulated storms both in the present and future climates

do not grow as fast as the observed ones, consistent with

Manganello et al. (2012). The growth also starts earlier in

the life cycle, and the gestation period when a storm

grows only weakly is longer (not shown). This could be

partly a consequence of the tracking procedure, as storms

in the model are identified much earlier in their life cycle.

Nevertheless, Fig. 10 clearly shows that the intensification

rate of supertyphoons increases in a future climate.

In addition to higher rate of development, future

storms also display higher maximum intensities. At the

peak (zero offset in Fig. 10), maximum 10-m wind speed

is on average higher by 4.7m s21 (8% increase) and

minimum SLP is lower by 4.2 hPa (5% increase in pres-

sure deficit relative to the ambient environment) in TS

versus AMIP. If 100-storm composites are considered,

the change in wind speed and SLP are respectively

14.7m s21 (9% increase) and29.6 hPa (11% increase in

pressure deficit; not shown). The latter estimate is

comparable to the results of Hill and Lackmann (2011),

who report an increase in the TC intensity for the same

A1B emission scenario equal to an 8-hPa reduction in

TABLE 8. Characteristics of the composited TCs for IBTrACS (OBS) and IFS at T1279 AMIP (TS) simulation for the MJJASON season

of 1961–2007 (2071–2117).

OBS AMIP T1279 TS T1279

About 50 most intense TC composite

Number of storms in the composite 48 47 47

Maximum 10-m wind speed, m s21 $65.0 or CAT 5 $54.0 or CAT 4 $58.5 or CAT 4

About 100 most intense TC composite

Number of storms in the composite 104 102 104

Maximum 10-m wind speed, m s21 $59.0 or CAT 4 $51.0 or CAT 3 $56.0 or CAT 4

FIG. 9. Locations of genesis (black squares) and the lifetime

maximum 10-m wind speed (colored circles) of the TCs in the

composites of about 50 most intense supertyphoons (see Table 8)

from (a) AMIP T1279 for the MJJASON season of 1961–2007 and

(b) TS T1279 for the MJJASON season of 2071–2117. Colors

correspond to the magnitude of the lifetime maximum 10-m wind

speed (m s21), as shown on the scale.
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minimum SLP, or a 10% increase in pressure deficit.

However, their results are based on an idealized down-

scaling study using a 6-km grid model with explicit

convection, focused on the North Atlantic and utilizing

outputs from multiple global GCMs. It also ignores the

impact of future changes in VWS—a scenario quite

compatible with our results that show a small change in

VWS over the region in a future climate (see section 5b).

Although the seasonal mean PI and VWS do not

change much in the region where supertyphoons de-

velop (see Figs. 8d,e and 9a,b), we investigate here

whether there is any change in the distribution of these

quantities along the actual TC tracks. Figures 11a and 11b

show frequency distributions of the storm-ambient PI

(Kossin and Camargo 2009) andVWS for theAMIP and

TS supertyphoon composites, defined as their maximum

values within a 38 radius from the storm center, and

sampled during the intensification period from the

tropical storm strength to the lifetime maximum in-

tensity. Even though the difference in the peaks of the PI

distributions is not large compared to the spread, future

supertyphoons tend to encounter significantly higher PIs

during their intensification period compared to the

present-day systems (Fig. 11a). They also tend to expe-

rience somewhat higher VWS, although the shift in the

VWS distribution is smaller compared to the PI

(Fig. 11b). To reduce the effects that the storms

themselves have on the ambient PI and VWS values,

we spectrally filter these fields to remove the storm

spatial scale (;1000 km). The adjusted ambient PI and

VWS are then defined as the regional averages of the

filtered fields within 58 from the storm center. This al-

ternative approach does not change the results for PI,

where a distinct, albeit smaller, shift toward higher

values in a future climate is still present. However, the

shift in the ambient VWS distribution practically dis-

appears (not shown). These results suggest that the

increase in the peak intensity of the future super-

typhoons likely results from a tendency of the local

storm-ambient environment to exhibit higher PI values

in a future climate.

In addition to the PI and VWS, a number of other

large-scale environmental factors have been suggested

to alter the TC development rate. For example, Li et al.

(2012) obtained faster TC development under lower

planetary vorticity conditions based on an idealized

modeling study. In the observational analysis of Wang

and Zhou (2008), they found that a southward shift of

TC formation in the NWPac favors rapid intensification.

In addition, rapidly intensifying typhoons tend to

have higher midlevel relative humidity and lower-

tropospheric conditional instability in their vicinity

compared to other classes of storms (Hendricks et al.

2010). Storm-ambient convective available potential

energy (CAPE) is also found to impact the simulated

minimum central pressure (Knutson and Tuleya 1999;

Shen et al. 2000), although in the modeling study of

Persing and Montgomery (2005) the connection be-

tween CAPE and the maximum possible intensity, as

measured by the quasi-steady maximum surface wind

speed, has not been identified. Wang and Zhou (2008)

have also suggested that higher low-level background

relative vorticity is conducive to rapid intensification, al-

though this is not supported by the analysis of Hendricks

et al. (2010). In our simulation, the faster-developing

future supertyphoons also tend to occur farther to the

south during their intensification period (Fig. 11c) and

propagate in an environment that is moister (Fig. 11d)

and conditionally more unstable (Fig. 11e). If the

spectrally truncated 500-hPa relative humidity is av-

eraged over 108 from the storm center instead of 58,
thus incorporating more of the synoptic-scale envi-

ronment, the shift in the distributions becomes larger

with a noticeable difference between the peaks (not

shown). In contrast, there is practically no systematic

difference in the storm-ambient 850-hPa relative vor-

ticity (Fig. 11f), which is in general agreement with the

results of Hendricks et al. (2010).

FIG. 10. Life cycle composites of (a) the maximum 10-m wind

speed and (b) the minimum SLP, based on the composites of about

50 most intense supertyphoons (see Table 8) for IBTrACS (OBS;

black), AMIPT1279 (blue), and TST1279 (red). Negative (positive)

offsets indicate pre (post) intensification.
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FIG. 11. Frequency distributions of the storm-ambient (a) potential intensity (m s21), (b) vertical wind shear

(m s21), (c) Coriolis parameter (1025 s21), (d) 500-hPa relative humidity (%), (e) equivalent potential temperature

difference (K) between 1000 and 700 hPa, and (f) 850-hPa relative vorticity (1025 s21) for theAMIPT1279 (blue) and

TST1279 (red) composites of about 50most intense supertyphoons during their intensification phase (seemore detail

in the text). Quantities shown are defined as maximum values within a 38 radius from the storm center in (a) and (b),

and as 58 averages within the storm center after the fields are truncated at T21 in (d)–(f).
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In summary, supertyphoons in a future climate tend to

develop more to the south, and within an environment

that possesses higher PI values and is also thermody-

namically more favorable for deep convection and vor-

tex intensification. These conditions are consistent with

faster development and higher intensities characteristic

of future supertyphoons. Large-scale dynamical condi-

tions in the vicinity of these storms, like VWS and low-

level relative vorticity, virtually remain unchanged.

b. Changes in the vertical structure of the most intense
supertyphoons

To substantiate the results of the previous section, we

compare structural characteristics of the supertyphoons

described above. Regional sampling of the fields asso-

ciated with a propagating storm is performed in a radial

coordinate system centered on the storm center [details

in Bengtsson et al. (2007b)]. Prior to compositing, the

radial grid is oriented with the direction of storm prop-

agation to reduce the influence of storm direction on the

composite structure. Further details are similar to

Manganello et al. (2012), except for the following: 1) the

storm center at each level is defined as amaximum in the

full-resolution (T1279) vorticity field and 2) geophysical

fields are also sampled at full resolution. Results pre-

sented below primarily show radius–height plots of az-

imuthal mean fields, as themain focus here is on changes

in the vertical structure. Comparison of the composites

is made at the time when storms in each sample reach

maximum intensity.

1) DYNAMICAL STRUCTURE

The primary circulation of the AMIP composite

(Fig. 12a) shows cyclonic flow throughout the tropo-

sphere with a well-defined inner core, azimuthal mean

tangential wind maximum of approximately 58m s21 at

850 hPa and radius of maximum winds (RMW) at

around 0.58. The secondary circulation displays a layer

of radial inflow about 2 km deep in the lower tropo-

sphere and an outflow in the upper troposphere

(Fig. 12b). The maximum inflow (outflow) is approxi-

mately215m s21 (15m s21). These results are in overall

agreement with our prior analysis using the same model

[see Figs. 7f,j in Manganello et al. (2012)]. The rising

branch of the secondary circulation (Fig. 12c) shows an

indication of a bimodal distribution with one maximum

at 700 hPa below the freezing level, which is at about

400 hPa in the inner core, and another at 200 hPa. This

feature is found in a number of observational and

modeling studies [see Fierro et al. (2009) and the ref-

erences therein], suggesting that the lower maximum

could be attributed to dynamic forcing (frictional con-

vergence) while the upper one could be due to buoyancy

FIG. 12. Azimuthally averaged present-day (AMIP) distributions

(contour) and projected (TS 2 AMIP) changes (shading; only dif-

ferences statistically significant at the 95%confidence level are shown)

of the (a) tangential wind (ms21), (b) radial wind (ms21), and

(c) negative of v (Pa s21), based on the composites of about 50 most

intense supertyphoons in the AMIP and TS at T1279 (see Table 8)

at the time of their peak intensity. Contour interval is 4ms21 in

(a), 3ms21 in (b), and 1Pas21 in (c) and negative contours are dashed.
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effects. While many of the structural features of the TC

composite described above are quite realistic, Fig. 12

clearly shows that IFS at T1279 does not fully resolve

a TC eye and related processes. Although some TCs in

the composite exhibit subsidence in the vicinity of the

storm’s center (not shown), overall the region of sub-

sidence is not clearly defined, and updrafts are too

confined to the center and do not exhibit an outward

slope with height. These deficiencies are likely a result of

the resolution still being too coarse to fully resolve inner

core processes, although the choice of parameterizations

such as for horizontal diffusion could matter as well.

In response to climate change, the inflow in the boundary

layer is substantially amplified, particularly inside the

RMW (Fig. 12b). There is also an anomalous outflow

above the shallow inflow.Themodel is also able to simulate

a weak anomalous inflow in the mid to upper troposphere,

which is considered to be important for intensification and

the inner-core warming [see Gopalakrishnan et al. (2011)

and the references therein]. The upper-tropospheric

outflow is also enhanced and appears to extend to

higher altitudes, although because of a very coarse ver-

tical output resolution at these levels it is hard to discern

these changes. In turn, the tangential winds increase in

the inner core throughout the troposphere (Fig. 12a), in

correspondencewith an overall intensity change (Fig. 10).

The largest increase occurs at the level of maximum

winds (at the top of the boundary layer) inside the eye-

wall, which is consistent with stronger inflow penetrating

closer to the storm center. This results in a slight re-

duction of the RMW and the overall size of the com-

posited TC, based on the radius of the 17ms21 isotach

(not shown). It is interesting that these results are in

overall agreement with the recent findings of Kanada

et al. (2013), who used a nonhydrostatic regionalmodel at

2-km horizontal resolution to downscale a small number

of very intense typhoons generated in climate change

experiments with a global AGCM. They also report that

the tangential wind distribution becomes taller and nar-

rower in the future climate, RMW decreases, and more

intense inflows penetrate closer to the storm center, al-

though in their study these changes are more evident.

Stronger inflow and outflow in the future super-

typhoons by continuity must result in a larger upward

mass flux in the eyewall. Indeed, the updrafts are

stronger above the boundary layer, consistent with the

inflow changes (Fig. 12c), and in the midtroposphere.

The similarity with the results of Kanada et al. (2013) is

more limited here, partly due to the difficulties with the

simulation of an eye as previously stated, although they

also find that the area of intense updrafts extends closer

to the storm center and to lower levels, with the stron-

gest updrafts moving to higher altitudes.

To assess the impact of climate change on the full

distribution of vertical velocity including the extremes,

such as the maximum updrafts and downdrafts, we

compare contoured frequency by altitude diagrams

(CFADs; e.g., Yuter and Houze 1995) of the negative of

v, constructed for the AMIP and TS supertyphoon

composites (Fig. 13). In the AMIP profile (Fig. 13a), the

FIG. 13. Contoured frequency by altitude diagrams (CFADs) of

the negative v (Pa s21) based on the composites of about 50 most

intense supertyphoons in the (a) AMIP T1279 and (b) TS T1279

(see Table 8), at the time of their peak intensity. The thin black

contours are 0.5%, 1%, 2%, 3%, 4%, and 5% of vertical motions,

and the thick black contours are 0.1% and 0.01%. In (b), the 0.1%

and 0.01% contours are shown in blue and red, respectively, from

the AMIP simulation in (a). Bin size is 2 Pa s21 and CFADs are

taken from grid points within 1.58 from the TC center.
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range of vertical motions is almost uniform with height,

including the very strong updrafts (0.1% of occurrence),

which have been linked to the coarseness of the model

grid (e.g., Gentry and Lackmann 2010). Only the ex-

tremely strong updrafts and downdrafts (0.01% of oc-

currence) show variation with height, where the largest

values are attained at about the 700-hPa level. The range

of vertical motions is somewhat underestimated as well:

updrafts less than about 15 Pa s21 (roughly equivalent to

the vertical velocity in height coordinates equal to

2m s21) represent 98%–99%of upward vertical motions

in the eyewall compared to 70%–95% in the observa-

tional and high-resolution modeling studies [see, e.g.,

Fierro et al. (2009) and Gentry and Lackmann (2010),

and the references therein]. The most extreme updrafts

reach only 41Pa s21 (or about 5ms21) as opposed to 10–

12ms21 in observations (see references above). In re-

sponse to climate change, the frequency of the intense

updrafts increases throughout the troposphere (Fig. 13b).

The very strong updrafts (0.1% of occurrence) increase

in magnitude rather uniformly with height. The ex-

tremely strong updrafts (0.01% of occurrence) become

more intense mainly at the surface, above the boundary

layer, and in the middle troposphere, which is similar to

the azimuthally mean changes in the vertical velocity

shown in Fig. 12c. As a result, the maximum updraft

speeds increase in the future climate with the largest

values shifting to higher altitudes (between 600 and

400 hPa). There is no clear change in the distribution of

downdrafts, except for a slight increase in the downdraft

speeds at the surface.

2) THERMODYNAMIC STRUCTURE

Coherent changes in the dynamical structure of

supertyphoons in a future climate, as described above,

are consistent with their overall higher intensities de-

rived from the surface-based quantities. The analysis is

now extended to thermodynamic fields to further our

understanding of the TC intensity changes. Consistent

with the well-developed secondary circulation, the

AMIP composite has a distinct warm core throughout

the troposphere with a maximum anomaly of approxi-

mately 18K at about 200 hPa (Figs. 14a,d). Specific hu-

midity is elevated in the inner core (Figs. 14b,e) in

agreement with strong updrafts there that extend to

the boundary layer. As a result, equivalent potential

temperature (ue) attains the highest values in this region

and is practically conserved with height in the eyewall

(Figs. 14c,f). The latter is characteristic of undilute moist-

neutral ascent (e.g., Hawkins and Imbembo 1976).

In a warmer climate, the largest increase in ue occurs in

the boundary/inflow layer, particularly at the surface, and

the inner core (Fig. 14c). The change in the boundary

layer extends as far as 58 from the composite storm

center (not shown) and results from the increase in

temperature (Fig. 14a) and particularly specific humid-

ity (Fig. 14b), as relative humidity remains almost the

same (not shown). Figure 14c also suggests that a com-

parable gain in the inner-core ue throughout the tropo-

sphere results from an upward transport of higher

entropy boundary layer air by means of the forced

eyewall ascent (leading to the largest enhancement at

midlevels; Figs. 14e,f) and a stronger upper-tropospheric

latent heat release, mostly above 200 hPa (Fig. 14d). The

latter leads to the deepening of the warm core, which is

consistent with the upward shift of the outflow layer

(Fig. 12b), azimuthal mean upward motion (Fig. 12c),

and the frequency of extremely strong updrafts

(Fig. 13b).

7. Discussion and conclusions

This study investigates future changes in the NWPac

TC activity projected by the multidecadal simulations

with the 16-km ECMWF IFS under the IPCC A1B

emissions scenario, thereby extending the horizontal

resolution of such global model simulations to below

20 km. We also compare the results to analogous simu-

lations with the 125-km IFS, to further identify the

benefits of high versus low resolution in simulating TC

climatology, variability, and change in a future climate.

Considering large interannual and interdecadal varia-

tions in the NWPac TC activity, it remains uncertain

whether there has been any detectable anthropogenic

influence on the TC activity in this basin (Lee et al.

2012). The focus of the present study is largely on the

projected changes in the typhoon activity at the end of

the twenty-first century compared to the end of the

twentieth century.

Both resolutions are found to reproducemany aspects

of the present-day typhoon activity quite well. Consis-

tent with other studies, the 16-km IFS clearly stands out

because of its ability to represent systems at the high end

of the intensity scale and a significantly better simulation

of genesis locations. We also find that it shows a mark-

edly better skill in reproducing changes in the TC in-

tensity distribution on the interannual time scales and in

response to ENSO, as well as shifts in genesis related to

ENSO. Nevertheless, the magnitude of the changes in

the intensity distribution, both forced and a result of the

model’s natural variability, is quite low compared to that

observed and needs to be kept in mind when evaluating

future changes. It is notable that even the downscaling

method of Emanuel that utilizes a simplified very high-

resolution coupled model that can generate a great

number of cases cannot reproduce ENSO-related
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FIG. 14. Azimuthally averaged present-day (AMIP) distributions (contour) and projected (TS2AMIP) changes

(shading; only differences statistically significant at the 95% confidence level are shown) of the (a) temperature (K),

(b) specific humidity (g kg21), and (c) equivalent potential temperature (K), based on the composites of about 50

most intense supertyphoons in the AMIP and TS T1279 (see Table 8) at the time of their peak intensity. (d)–(f) As

in (a)–(c), except anomalies relative to the storm-ambient conditions (defined as azimuthal and radial means within

58 from the composite TC center) are shown. Contour interval is 108K in (a), 1 g kg21 in (b) and (e), 5K in (c) and (f),

and 2K in (d).

7642 JOURNAL OF CL IMATE VOLUME 27



changes in the intensity distribution as large as observed

(Emanuel et al. 2008), which indicates that it may not be

just a resolution issue. This further emphasizes the need

for global model improvements to increase the accuracy

of climate change projections of the TC intensity change

and related metrics, in addition to providing reliable

estimates of the changes in the forcing fields (global and

regional SST changes, greenhouse gases, aerosols, etc.)

that are used to drive the AGCMs.

In contrast to a number of recent global modeling

studies (Li et al. 2010; Murakami et al. 2011; Murakami

et al. 2012a,b; Zhao and Held 2012; see also a review by

Ying et al. 2012), both versions of the IFS project a small

and insignificant change in the future NWPac TC fre-

quency as a result of a distinct shift in the genesis loca-

tions. It appears that these differences are largely due to

a different nature of the simulated climate change in the

region. It amounts to an increase in the deep convective

activity in the central equatorial Pacific with the larg-

est response west of the date line, and concomitant

strengthening of the monsoon trough in the southeast-

ern part of the domain including southward penetration

of the NWPac subtropical high. Our results agree with

the IPCC AR4 multimodel ensemble-mean response in

that the largest increase in precipitation and convective

mass flux takes place in the central equatorial Pacific

(Vecchi and Soden 2007b). Themain differences include

a weaker reduction of convective mass flux over the

Maritime Continent and no change in precipitation and

deep convective activity over the western north Indian

Ocean.

Uncertainties in the future projections of the TC ac-

tivity could stem from the uncertainties in the future

forcing fields generated by coupled climate models, and

uncertainties in the response to these fields by atmo-

spheric models integrated in the time-slice mode. The

role of the former uncertainties could be quite signifi-

cant (e.g., Ying et al. 2012), which is not addressed in the

present study mostly because of a large computational

cost associated with integrating an AGCM at such high

horizontal resolution as 16 km. The time-slice approach

by design neglects future changes in the interannual

variability of SST, including ENSO. Since models have

large biases in the simulation of relevant aspects of the

present climate (e.g., Schneider et al. 2009), and there is

no current consensus on the future change of ENSO

(e.g., Guilyardi 2006), a suite of multimodel ensemble

integrations would be required to address this additional

uncertainty. Although the results of our study could be

viewed as one possible realization of the future climate

change and the associated impact on the typhoon ac-

tivity, a number of issues like the influence of model

biases and climate sensitivity need to be clarified.

The high-resolution version of the IFS clearly shows

that in a future climate scenario, such as obtained from

theCCSM3.0A1Bexperiment, the frequency of typhoons

and of very intense (category 3–5) typhoons increases

significantly. It is accompanied by a corresponding re-

duction in the frequency of weaker storms, hence con-

tributing to the growing consensus on this subject. This

results in a significant increase (12%) in the mean peak

TC intensity and largely determines the 51% increase in

the PDI. These changes are considerable to the extent

that they are comparable to the model’s natural vari-

ability in the current climate. Analysis of the intensity

life cycle of the large supertyphoon composites has in-

dicated that along with the mean peak intensities the

development rate of this category of storms also in-

creases in the future climate. TC intensification and

intensity are controlled by a number of thermodynamic

and dynamic processes that could be internal to the

system or result from a TC interaction with the large-

scale environment [see, e.g., Zeng et al. (2007) and ref-

erences therein]. By examining only the environmental

influence in this study, we have found that future su-

pertyphoons tend to develop within an environment that

is thermodynamically more favorable for faster de-

velopment and higher intensities, in addition to occur-

ring more to the south, which could also enhance their

intensification rate. In contrast, the distributions of the

storm-ambient dynamical forcings, such as VWS and

low-level relative vorticity, remain virtually unchanged

in the future climate. Our study further extends the

findings of Wing et al. (2007) and Kossin and Camargo

(2009), namely that in order to make accurate pro-

jections of the future TC intensity change, identifying

changes in the full distributions of the local storm-

ambient large-scale conditions would be necessary, as

comparison of the regional and seasonal means is of

limited value. This would require placing higher confi-

dence in the future projections of genesis locations and

track changes. Finally, we would like to add that in

a more realistic experimental setting, where interaction

with the underlying ocean is included, the rate of TC

intensification in the future would likely be reduced.

This is so because of a negative feedback of the TC-

induced upper ocean mixing (stirring of warm surface

waters with colder water in the thermocline) on TC in-

tensity (e.g., Schade and Emanuel 1999), which is more

pronounced for strong TCs. On the other hand, Knutson

et al. (2001) have shown that percentage increase in the

TC intensity is not affected by the ocean coupling. As the

thermocline depth is projected to shoal in the western

equatorial Pacific and deepen to the north (Vecchi and

Soden 2007b), it is not exactly clear what would be the net

effect of the above feedback. Ultimately, simulations
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with high-resolution coupled atmosphere–wave–ocean

GCMs would be able to answer these questions.

The increase in the intensity of the future super-

typhoons is reflected in their structural changes where

the primary and secondary circulations show system-

scale amplification with signs of contraction. A more

vigorous eyewall ascent, which transports higher en-

tropy air available at the surface in a warmer climate to

upper levels, results in a stronger diabatic heating aloft

and a strengthening of the warm core. A deeper warm

core is accompanied by an upward shift in the outflow

layer and the frequency of the most intense updrafts.

Specifically, the frequency of intense updrafts (0.1% of

occurrence) is higher throughout the troposphere with

no changes in downdrafts, and the extremely strong

updrafts (0.01% of occurrence) are more intense, par-

ticularly in the mid to upper troposphere. The latter

result is somewhat different from the regional simula-

tions of Hill and Lackmann (2011) at 2-km resolution

where the change in maximum updraft speeds is not

observed, and stronger upward motion is found only

above the level of maximum updrafts.

Finally, we emphasize that the differences between

the high- and low-resolution versions of the IFS in

simulating future typhoon activity are quite staggering.

In addition to the expected effect of model resolution on

the TC intensity distribution, the 125-km IFS has a dif-

ficulty in simulating systems of tropical origin that in-

tensify within the tropical environment, which is also

pertinent to other coarse-resolution models (Bengtsson

et al. 2006, 2007a; Strachan et al. 2013), thus severely

limiting the value of these climate change projections.

This further calls for thorough evaluation of models’

ability to simulate present-day TC activity—particularly

so for coarse-resolution AGCMs or coupled GCMs—

and caution in interpreting projections from such low-

resolution models.
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