11 research outputs found

    Genomic Exploration of the Hemiascomycetous Yeasts: 19. Ascomycetes-specific genes

    Get PDF
    AbstractComparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from ‘maverick’ genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the ‘maverick’ genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear ‘Ascomycetes-specific’. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the ‘Ascomycetes-specific’ genes tend to diverge more rapidly in evolution than that of other genes. Half of the ‘Ascomycetes-specific’ genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them

    Cloning and characterization of the EXG1 gene from the yeast Yarrowia lipolytica

    No full text
    The YlEXG1 gene of Yarrowia lipolytica, encoding an exo-1,3-ÎČ-glucanase, was isolated by screening a genomic library with a DNA probe obtained by PCR amplification, using oligonucleotides designed according to conserved regions in the EXG1, EXG2 and SSG1 genes from Saccharomyces cerevisiae. YlEXG1 consists of a 1263 bp open reading frame encoding a protein of 421 amino acids with a calculated molecular weight of 48,209 Da. Northern blot analysis revealed a unique YlEXG1-specific transcript, 1.4 kb long. A putative pre(signal)-peptide of 15 amino acids is proposed at the N-terminal domain of the primary translation product. The deduced amino acid sequence shares a high degree of homology with exo-1,3-ÎČ-glucanases from other yeast species, including S. cerevisiae, Kluyveromyces lactis, Pichia angusta and Debaryomyces occidentalis. YlExg1p contains the invariant amino acid positions which have been shown to be important in the catalytic function of family 5 glycosyl hydrolases. Chromoblot analysis indicated that YlEXG1 is located on chromosome VI. Disruption of YlEXG1 did not result in a phenotype under laboratory conditions and did not prevent the yeast-hypha transition. The sequence data reported in this paper have been assigned EMBL Accession No. Z46872.This research was supported by grants from the ComisiĂłn Interministerial de Ciencia y TecnologĂ­a (BIO93-0161 and BIO96-1413-C02-02). P. F. Esteban has been the recipient of a fellowship from the University of Salamanca.Peer Reviewe

    Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited.

    No full text
    Since its completion more than 4 years ago, the sequence of Saccharomyces cerevisiae has been extensively used and studied. The original sequence has received a few corrections, and the identification of genes has been completed, thanks in particular to transcriptome analyses and to specialized studies on introns, tRNA genes, transposons or multigene families. In order to undertake the extensive comparative sequence analysis of this program, we have entirely revisited the S. cerevisiae sequence using the same criteria for all 16 chromosomes and taking into account publicly available annotations for genes and elements that cannot be predicted. Comparison with the other yeast species of this program indicates the existence of 50 novel genes in segments previously considered as 'intergenic' and suggests extensions for 26 of the previously annotated genes.comparative studyjournal article2000 Dec 22importe

    Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes.

    No full text
    Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them.comparative studyjournal article2000 Dec 22importe
    corecore