52 research outputs found

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

    Get PDF
    A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10 20 at the GeV scale

    Measurement of coherent π+π^{+} production in low energy neutrino-Carbon scattering

    Get PDF
    We report the first measurement of the flux-averaged cross section for charged current coherent π+\pi^{+} production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {\it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region

    Polygonal faults-furrows system related to early stages of compaction-Upper Miocene to present sediments of the Lower Congo Basin

    No full text
    A new polygonal fault system has been identified in the Lower Congo Basin. This highly faulted interval (HFI), 700±50 m thick, is characterized by small extensional faults displaying a polygonal pattern in plan view. This kind of fracturing is attributed to volumetric contraction of sediments during early stages of compaction at shallow burial depth. 3-D seismic data permitted the visualization of the progressive deformation of furrows during burial, leading to real fractures, visible on seismic sections at about 78 m below seafloor. We propose a new geometrical model for volumetrical contraction of mud-dominated sediments. Compaction starts at the water–sediment interface by horizontal contraction, creating furrows perpendicular to the present day slope. During burial, continued shrinkage evolves to radial contraction, generating hexagonal cells of dewatering at 21 m below seafloor. With increasing contraction, several faults generations are progressively initiated from 78 to 700 m burial depth. Numerous faults of the HFI act as highly permeable pathways for deeper fluids. We point out that pockmarks, which represent the imprint of gas, oil or pore water escape on the seafloor, are consistently located at the triple-junction of three neighbouring hexagonal cells. This is highly relevant for predictive models of the occurrence of seepage structures on the seafloor and for the sealing capacity of sedimentary cover over deeper petroleum reservoirs.<br/

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
    corecore