1,204 research outputs found

    The development and neuronal complexity of bipinnaria larvae of the sea star Asterias rubens

    Get PDF
    Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Amongst the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pleuteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies amongst echinoderms is found in the class Asteroidea (sea-stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neuro-chemically. Here we have analysed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea-star Asterias rubens, employing use of a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed with a diverse set of antibodies, with identification of at least three centres with different neuro-chemical signature within the previously described nervous system: the anterior apical organ, oral region and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae were analysed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint for species utilizing this larval strategy

    Heritability of DNA-damage-induced apoptosis and its relationship with age in lymphocytes from female twins

    Get PDF
    Apoptosis is a physiological form of cell death important in normal processes such as morphogenesis and the functioning of the immune system. In addition, defects in the apoptotic process play a major role in a number of important areas of disease, such as autoimmune diseases and cancer. DNA-damage-induced apoptosis plays a vital role in the maintenance of genomic stability by the removal of damaged cells. Previous studies of the apoptotic response (AR) to radiation-induced DNA damage of lymphoid cells from individuals carrying germline TP53 mutations have demonstrated a defective AR compared with normal controls. We have also previously demonstrated that AR is reduced as individuals age. Results from the current study on 108 twins aged 18–80 years confirm these earlier findings that the AR of lymphoid cells to DNA damage is significantly reduced with increasing age. In addition this twin study shows, for the first time, that DNA-damage-induced AR has a strong degree of heritability of 81% (95% confidence interval 67–89%). The vital role of DNA-damage-induced apoptosis in maintaining genetic stability, its relationship with age and its strong heritability underline the importance of this area of biology and suggest areas for further study

    DRG coding practice: a nationwide hospital survey in Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis Related Group (DRG) payment is preferred by healthcare reform in various countries but its implementation in resource-limited countries has not been fully explored.</p> <p>Objectives</p> <p>This study was aimed (1) to compare the characteristics of hospitals in Thailand that were audited with those that were not and (2) to develop a simplified scale to measure hospital coding practice.</p> <p>Methods</p> <p>A questionnaire survey was conducted of 920 hospitals in the Summary and Coding Audit Database (SCAD hospitals, all of which were audited in 2008 because of suspicious reports of possible DRG miscoding); the questionnaire also included 390 non-SCAD hospitals. The questionnaire asked about general demographics of the hospitals, hospital coding structure and process, and also included a set of 63 opinion-oriented items on the current hospital coding practice. Descriptive statistics and exploratory factor analysis (EFA) were used for data analysis.</p> <p>Results</p> <p>SCAD and Non-SCAD hospitals were different in many aspects, especially the number of medical statisticians, experience of medical statisticians and physicians, as well as number of certified coders. Factor analysis revealed a simplified 3-factor, 20-item model to assess hospital coding practice and classify hospital intention.</p> <p>Conclusion</p> <p>Hospital providers should not be assumed capable of producing high quality DRG codes, especially in resource-limited settings.</p

    6-Shogaol reduced chronic inflammatory response in the knees of rats treated with complete Freund's adjuvant

    Get PDF
    BACKGROUND: 6-Shogaol is one of the major compounds in the ginger rhizome that may contribute to its anti-inflammatory properties. Confirmation of this contribution was sought in this study in Sprague- Dawley rats (200–250 g) treated with a single injection (0.5 ml of 1 mg/ml) of a commercial preparation of complete Freund's Adjuvant (CFA) to induce monoarthritis in the right knee over a period of 28 days. During this development of arthritis, each rat received a daily oral dose of either peanut oil (0.2 ml-control) or 6-shogaol (6.2 mg/Kg in 0.2 ml peanut oil). RESULTS: Within 2 days of CFA injection, the control group produced maximum edematous swelling of the knee that was sustained up to the end of the investigation period. But, in the 6-shogaol treated group, significantly lower magnitudes of unsustained swelling of the knees (from 5.1 ± 0.2 mm to 1.0 ± 0.2 mm, p < 0.002, n = 6) were produced during the investigation period. Unsustained swelling of the knees (from 3.2 ± 0.6 mm to 0.8 ± 1.1 mm, p < 0.00008, n = 6) was also produced after 3 days of treatment with indomethacin (2 mg/Kg/day) as a standard anti-inflammatory drug, but during the first 2 days of drug treatment swelling of the knees was significantly larger (11.6 ± 2.0 mm, p < 0.0002, n = 6) than either the controls or the 6-shogaol treated group of rats. This exaggerated effect in the early stage of indomethacin treatment was inhibited by montelukast, a cysteinyl leukotriene receptor antagonist. Also, 6-shogaol and indomethacin were most effective in reducing swelling of the knees on day 28 when the controls still had maximum swelling. The effect of 6-shogaol compared to the controls was associated with significantly lower concentration of soluble vascular cell adhesion molecule-1 (VCAM-1) in the blood and infiltration of leukocytes, including lymphocytes and monocytes/macrophages, into the synovial cavity of the knee. There was also preservation of the morphological integrity of the cartilage lining the femur compared to damage to this tissue in the peanut oil treated control group of rats. CONCLUSION: From these results, it is concluded that 6-shogaol reduced the inflammatory response and protected the femoral cartilage from damage produced in a CFA monoarthritic model of the knee joint of rats

    Search for the standard model Higgs boson at LEP

    Get PDF

    Hereditary Hemochromatosis (HFE) genotypes in heart failure: Relation to etiology and prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is believed that hereditary hemochromatosis (HH) might play a role in cardiac disease (heart failure (HF) and ischemia). Mutations within several genes are HH-associated, the most common being the <it>HFE </it>gene. In a large cohort of HF patients, we sought to determine the etiological role and the prognostic significance of <it>HFE </it>genotypes.</p> <p>Methods</p> <p>We studied 667 HF patients (72.7% men) with depressed systolic function, enrolled in a multicentre trial with a follow-up period of up to 5 years. All were genotyped for the known <it>HFE </it>variants C282Y, H63D and S65C.</p> <p>Results</p> <p>The genotype and allele frequencies in the HF group were similar to the frequencies determined in the general Danish population. In multivariable analysis mortality was not predicted by C282Y-carrier status (HR 1.2, 95% CI: 0.8-1.7); H63D-carrier status (HR 1.0, 95% CI: 0.7-1.3); nor S65C-carrier status (HR 1.2, 95% CI: 0.7-2.0). We identified 27 (4.1%) homozygous or compound heterozygous carriers of <it>HFE </it>variants. None of these carriers had a clinical presentation suggesting hemochromatosis, but hemoglobin and ferritin levels were higher than in the rest of the cohort. Furthermore, a trend towards reduced mortality was seen in this group in univariate analyses (HR 0.4, 95% CI: 0.2-0.9, p = 0.03), but not in multivariate (HR 0.5, 95% CI: 0.2-1.2).</p> <p>Conclusion</p> <p><it>HFE </it>genotypes do not seem to be a significant contributor to the etiology of heart failure in Denmark. <it>HFE </it>variants do not affect mortality in HF.</p

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Genetic Reconstruction of Protozoan rRNA Decoding Sites Provides a Rationale for Paromomycin Activity against Leishmania and Trypanosoma

    Get PDF
    Aminoglycoside antibiotics target the ribosomal decoding A-site and are active against a broad spectrum of bacteria. These compounds bind to a highly conserved stem-loop-stem structure in helix 44 of bacterial 16S rRNA. One particular aminoglycoside, paromomycin, also shows potent antiprotozoal activity and is used for the treatment of parasitic infections, e.g. by Leishmania spp. The precise drug target is, however, unclear; in particular whether aminoglycoside antibiotics target the cytosolic and/or the mitochondrial protozoan ribosome. To establish an experimental model for the study of protozoan decoding-site function, we constructed bacterial chimeric ribosomes where the central part of bacterial 16S rRNA helix 44 has been replaced by the corresponding Leishmania and Trypanosoma rRNA sequences. Relating the results from in-vitro ribosomal assays to that of in-vivo aminoglycoside activity against Trypanosoma brucei, as assessed in cell cultures and in a mouse model of infection, we conclude that aminoglycosides affect cytosolic translation while the mitochondrial ribosome of trypanosomes is not a target for aminoglycoside antibiotics
    corecore