452 research outputs found

    Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-Cyclodextrin complex

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Eur J Pharm Biopharm. 2011 May;78(1):58-66. Epub 2010 Dec 30.Mixtures containing ibuprofen (IB) complexed with b-cyclodextrin (bCD) obtained by two complexation methods [suspension/solution (with water removed by air stream, spray- and freeze-drying) and kneading technique] were processed into pharmaceutical dosage forms (minitablets and capsules). Powders (IB, bCD and IBbCD) were characterized for moisture content, densities (true and bulk), angle of repose and Carr’s index, X-ray and NMR. From physical mixtures and IBbCD complexes without other excipients were prepared 2.5-mm-diameter minitablets and capsules. Minitablets were characterized for the energy of compaction, tensile strength, friability, density and IB release (at pH 1.0 and 7.2), whereby capsules were characterized for IB release. The results from the release of IB were analyzed using different parameters, namely, the similarity factor (f2), the dissolution efficiency (DE) and the amounts released at a certain time (30, 60 and 180 min) and compared statistically (a = 0.05). The release of IB from the minitablets showed no dependency on the amount of water used in the formation of the complexes. Differences were due to the compaction force used or the presence of a shell for the capsules. The differences observed were mostly due to the characteristics of the particles (dependent on the method considered on the formation of the complexes) and neither to the dosage form nor to the complex of the IB

    Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals

    Get PDF
    We report diffusion quantum Monte Carlo calculations of three-dimensional Wigner crystals in the density range r_s=100-150. We have tested different types of orbital for use in the approximate wave functions but none improve upon the simple Gaussian form. The Gaussian exponents are optimized by directly minimizing the diffusion quantum Monte Carlo energy. We have carefully investigated and sought to minimize the potential biases in our Monte Carlo results. We conclude that the uniform electron gas undergoes a transition from a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1. The diffusion quantum Monte Carlo results are compared with those from Hartree-Fock and Hartree theory in order to understand the role played by exchange and correlation in Wigner crystals. We also study "floating" Wigner crystals and give results for their pair-correlation functions

    Understanding Late Quaternary change at the land ocean interface: a synthesis of the evolution of the Wilderness coastline, South Africa

    Get PDF
    Coastal barrier systems have been widely used to understand the responses of coastal margins to fluctuating Pleistocene sea levels. What has become apparent, particularly with the development of robust chronological frameworks, is that gaps in terrestrial barrier sedimentary records are not uncommon and that they most likely reflect phases of barrier construction on the now submerged continental shelf. Thus, understanding the land–ocean interface through time is critical to fully appreciate the Quaternary archives contained within the barriers and their associated back-barrier deposits. This study uses offshore and lakefloor (back-barrier) seismic profiling from the South African south coast at Wilderness to link the sub-aerially exposed barrier stratigraphy to the currently submerged geological and sedimentological record. A total of eight separate submerged aeolian units are identified at water depths of up to 130 m below mean sea level. Their approximate ages are constrained with reference to the eustatic sea-level record and the deepest units are consistent with the estimated magnitude of sea-level lowering during the Last Glacial Maximum (LGM) on the South African coastline. As previously assumed, aeolian sedimentation tracked the shoreline onto the continental shelf during the Late Pleistocene. During sea-level regressions, both the incision of fluvial channels and the deposition of back-barrier systems occurred across the continental shelf. During late low stand/early transgression periods, landward shoreface migration occurred, pre-existing channel incisions were infilled and pre-existing barriers were truncated. Rapid transgression, however, allowed the preservation of some back-barrier deposits, possibly aided by protection from antecedent topography. As sea level neared the present-day elevation, erosion of the mid-shelf sediments resulted in the development of a Holocene sediment wedge, which was augmented by Holocene fluvial sediment supply. The Holocene sand wedge is preserved in the back-barrier lakes and was deposited during the Holocene highstand inundation. Overlying middle to late Holocene terrestrial muds reflect the deposition of river-borne mud onto the shelf. These results clearly demonstrate that within transgressive–regressive sea-level cycles, accommodation space for barriers is controlled by antecedent drainage systems and gradients on the adjacent inner continental shelf

    Comparison between chiral and meson-theoretic nucleon-nucleon potentials through (p,p') reactions

    Get PDF
    We use proton-nucleus reaction data at intermediate energies to test the emerging new generation of chiral nucleon-nucleon (NN) potentials. Predictions from a high quality one-boson-exchange (OBE) force are used for comparison and evaluation. Both the chiral and OBE models fit NN phase shifts accurately, and the differences between the two forces for proton-induced reactions are small. A comparison to a chiral model with a less accurate NN description sets the scale for the ability of such models to work for nuclear reactions.Comment: 6 pages, revtex, 4 eps-figure

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=Λ+w1ρ(a)+w2aβ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a3(1+w)+ρ02aβ+ρ03a3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,00.4\Omega_{\text{m},0} \simeq 0.4 and n1n \simeq -1 (β=3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification
    corecore