31 research outputs found
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (Pâ<â0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired ÎČ-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of âŒ2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 Ă 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 Ă 10(-4)), improved ÎČ-cell function (P = 1.1 Ă 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 Ă 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
Utvinning av lignin med lÄg natriumhalt ur svartlut
Validerat; 20101217 (root
Studies of heat transfer and furnace temperature uniformity during combustion of oil and wood using oxygen enrichment technology
In many combustion applications a switch from fossil to renewable fuels, e.g. from fueloil to wood powder, may result in a reduction of production capacity in the boiler,furnace or kiln. Oxygen enrichment of the combustion air can be used to improve thethermal efficiency of practical combustors, i.e. reduce heat losses and promote fuelsavings. In addition, oxygen enrichment can reduce NOx emissions and also facilitateCO2 scrubbing and capture processes in such systems. In this work, flame characteristicsand furnace temperature profiles during oxygen enriched combustion were studied whenoxygen was added to the combustor at different enrichment levels by the use of a lance.The experiments were carried out in a pilot-scale furnace fired with (i) wood powder and(ii) heavy fuel oil (no.5). The results show that for the wood flame, the average furnacetemperature becomes higher and the furnace temperature profile becomes more flat.Thus, compared to conventional air combustion, there are smaller differences betweennear-burner and back-end temperatures as oxygen is added to the process. For the oilflame, as oxygen was added to the process, a higher average furnace temperature wasobserved along with a distinct shift in furnace peak temperature towards the central partsof the furnace, creating a relatively strong temperature gradient towards the back-end ofthe furnace. Comparing the two flames, the furnace temperature profile of the oxygenenriched wood flame becomes more flat compared to the oxygen enriched oil flame. Thisis interpreted as an effect of differences in overall fuel reactivity, in which the oil, being aliquid fuel, ignites and burns faster than the solid fuel wood powder. The results found inthis work shows that the burner that was used, being designed for conventional aircombustion by feeding of air through the primary, secondary and tertiary air vanes, couldhandle the changes in aerodynamics caused by the reduced air flows. The general resultsfrom this work are useful for furnace and kiln applications in which a more controllableflame and process temperature is required, e.g. in a lime kiln where a fuel switch fromfossil fuels to biomass is considered.GodkÀnd; 2011; 20111010 (dannor
Inverkan av förbrÀnningsteknik och brÀnsle pÄ hÀlsofarligheten av partikelemissioner frÄn smÄskalig biobrÀnsleeldning
GodkÀnd; 2011; 20111010 (andbra
Inverkan av förbrÀnningsteknik och brÀnsle pÄ hÀlsofarligheten av partikelemissioner frÄn smÄskalig biobrÀnsleeldning
GodkÀnd; 2011; 20111010 (andbra
Emissioner frÄn smÄskalig vÀrmeproduktion med biobrÀnslen : Ett samordnat projekt som berör hÀlsopÄverkande partikel- och tungmetallutslÀpp frÄn tradionella och alternativa biobrÀnslen
GodkÀnd; 2011; 20111010 (andbra
Recommended from our members
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men â€50y, men >50y, women â€50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (â„50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape
FTO genotype is associated with phenotypic variability of body mass index
There is evidence across several species for genetic control of phenotypic variation of complex traits, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using âŒ170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of âŒ0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI, possibly mediated by DNA methylation. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000