113 research outputs found
In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC
A NASA DC‐8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC4 ) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO2 measurements. Elevated concentrations of SO2, sulfate aerosol, and particles were measured by DC‐8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ∼2 h at Huila to ∼22–48 h downwind of Ecuador. The plumes contained sulfate‐rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In‐plume O3 concentrations were ∼70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O3 depletion via reactive halogen chemistry. The TC4 data record rapid cloud processing of the Huila volcanic plume involving aqueous‐phase oxidation of SO2 by H2O2, but overall the data suggest average in‐plume SO2 to sulfate conversion rates of ∼1%–2% h−1 . SO2 column amounts measured in the Tungurahua plume (∼0.1–0.2 Dobson units) are commensurate with average SO2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacit
In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC^4
A NASA DC-8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC^4) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC^4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO_2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO_2 measurements. Elevated concentrations of SO_2, sulfate aerosol, and particles were measured by DC-8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ~2 h at Huila to ~22–48 h downwind of Ecuador. The plumes contained sulfate-rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In-plume O_3 concentrations were ~70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O_3 depletion via reactive halogen chemistry. The TC^4 data record rapid cloud processing of the Huila volcanic plume involving aqueous-phase oxidation of SO_2 by H_2O_2, but overall the data suggest average in-plume SO_2 to sulfate conversion rates of ~1%–2% h^(−1). SO_2 column amounts measured in the Tungurahua plume (~0.1–0.2 Dobson units) are commensurate with average SO_2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC^4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacity
A global catalogue of large SO \u3c inf\u3e 2 sources and emissions derived from the Ozone Monitoring Instrument
Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr-1 to more than 4000 kt yr-1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005-2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr-1 and not detected by OMI
Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights
This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS), based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08–2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase
First recorded eruption of Nabro volcano, Eritrea, 2011
We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of re- gional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodi- gious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic signifi- cance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of
Editorial responsibility: G. Giordano
the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shal- low, NW–SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response miti- gated the human costs of the eruption
Version 1 NOAA-20/OMPS Nadir Mapper total column SO2 product: continuation of NASA long-term global data record
For nearly 2 decades, the Ozone Monitoring Instrument (OMI) aboard the NASA Aura spacecraft (launched in 2004) and the Ozone Mapping and Profiler Suite (OMPS) aboard the NASA/NOAA Suomi National Polar-orbiting Partnership (SNPP) satellite (launched in 2011) have been providing global monitoring of SO2 column densities from both anthropogenic and volcanic activities. Here, we describe the version-1 NOAA-20 (N20)/OMPS SO2 product (10.5067/OMPS/OMPS_N20_NMSO2_PCA_L2_Step1.1, Li et al., 2023), aimed at extending the long-term climate data record. To achieve this goal, we apply a principal component analysis (PCA) retrieval technique, also used for the OMI and SNPP/OMPS SO2 products, to N20/OMPS. For volcanic SO2 retrievals, the algorithm is identical between N20 and SNPP/OMPS and produces consistent retrievals for eruptions such as Kilauea in 2018 and Raikoke in 2019. For anthropogenic SO2 retrievals, the algorithm has been customized for N20/OMPS, considering its greater spatial resolution and reduced signal-to-noise ratio as compared with SNPP/OMPS. Over background areas, N20/OMPS SO2 slant column densities (SCDs) show relatively small biases, comparable retrieval noise with SNPP/OMPS (after aggregation to the same spatial resolution), and remarkable stability with essentially no drift during 2018-2023. Over major anthropogenic source areas, the two OMPS retrievals are generally well-correlated, but N20/OMPS SO2 is biased low, especially for India and the Middle East, where the differences reach ĝ1/4 20 % on average. The reasons for these differences are not fully understood but are partly due to algorithmic differences. Better agreement (typical differences of ĝ1/4 10 %-15 %) is found over degassing volcanoes. SO2 emissions (10.5067/MEASURES/SO2/DATA406, Fioletov et al., 2022) from large point sources, inferred from N20/OMPS retrievals, agree well with those based on OMI, SNPP/OMPS, and the TROPOspheric Monitoring Instrument (TROPOMI), with correlation coefficients \u3e0.98 and overall differences \u3c10 \u3e%. The ratios between the estimated emissions and their uncertainties offer insights into the ability of different satellite instruments to detect and quantify SO2 sources. While TROPOMI has the highest ratios of all four sensors, the ratios from N20/OMPS are slightly greater than OMI and substantially greater than SNPP/OMPS. Overall, our results suggest that the version-1 N20/OMPS SO2 product will successfully continue the long-term OMI and SNPP/OMPS SO2 data records. Efforts currently underway will further enhance the consistency of retrievals between different instruments, facilitating the development of multi-decade, coherent global SO2 datasets across multiple satellites
Efficacy of artesunate-amodiaquine and artemether-lumefantrine fixed-dose combinations for the treatment of uncomplicated Plasmodium falciparum malaria among children aged six to 59 months in Nimba County, Liberia: an open-label randomized non-inferiority trial.
BACKGROUND: Prospective efficacy monitoring of anti-malarial treatments is imperative for timely detection of resistance development. The in vivo efficacy of artesunate-amodiaquine (ASAQ) fixed-dose combination (FDC) was compared to that of artemether-lumefantrine (AL) among children aged six to 59 months in Nimba County, Liberia, where Plasmodium falciparum malaria is endemic and efficacy data are scarce. METHODS: An open-label, randomized controlled non-inferiority trial compared the genotyping adjusted day 42 cure rates of ASAQ FDC (ASAQ Winthrop®) to AL (Coartem®) in 300 children aged six to 59 months with uncomplicated falciparum malaria. Inclusion was between December 2008 and May 2009. Randomization (1:1) was to a three-day observed oral regimen (ASAQ: once a day; AL: twice a day, given with fatty food). Day 7 desethylamodiaquine and lumefantrine blood-concentrations were also measured. RESULTS: The day 42 genotyping-adjusted cure rate estimates were 97.3% [95% CI: 91.6-99.1] for ASAQ and 94.2% [88.1-97.2] for AL (Kaplan-Meier survival estimates). The difference in day 42 cure rates was -3.1% [upper limit 95% CI: 1.2%]. These results were confirmed by observed proportion of patients cured at day 42 on the per-protocol population. Parasite clearance was 100% (ASAQ) and 99.3% (AL) on day 3. The probability to remain free of re-infection was 0.55 [95% CI: 0.46-0.63] (ASAQ) and 0.66 [0.57-0.73] (AL) (p = 0.017). CONCLUSIONS: Both ASAQ and AL were highly efficacious and ASAQ was non-inferior to AL. The proportion of patients with re-infection was high in both arms in this highly endemic setting. In 2010, ASAQ FDC was adopted as the first-line national treatment in Liberia. Continuous efficacy monitoring is recommended. TRIAL REGISTRATION: The protocols were registered with Current Controlled Trials, under the identifier numbers ISRCTN51688713, ISRCTN40020296
The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): Motivation and experimental design
© 2018 Author(s). The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present four co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small-to moderate-magnitude volcanic eruptions, anthropogenic sulfur emissions, and transport processes over the period 1998-2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulfate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt Pinatubo eruption
- …
