507 research outputs found
Polymorphous Si thin films from radio frequency plasmas of SiH4 diluted in Ar: A study by transmission electron microscopy and Raman spectroscopy
In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Microbial Enrichment of a Novel Growing Substrate and its Effect on Plant Growth
The quality of torrefied grass fibers (TGF) as a new potting soil ingredient was tested in a greenhouse experiment. TGF was colonized with previously selected microorganisms. Four colonization treatments were compared: (1) no inoculants, (2) the fungus Coniochaeta ligniaria F/TGF15 alone, (3) the fungus followed by inoculation with two selected bacteria, and (4) the fungus with seven selected bacteria. Cultivation-based and DNA-based methods, i.e., PCR-DGGE and BOX-PCR, were applied to assess the bacterial and fungal communities established in the TGF. Although colonization was not performed under sterile conditions, all inoculated strains were recovered from TGF up to 26 days incubation. Stable fungal and bacterial populations of 108 and 109 CFU/g TGF, respectively, were reached. As a side effect of the torrefaction process that aimed at the chemical stabilization of grass fibers, potentially phytotoxic compounds were generated. These phytotoxic compounds were cold-extracted from the fibers and analyzed by gas chromatography mass spectrometry. Four of 15 target compounds that had previously been found in the extract of TGF were encountered, namely phenol, 2-methoxyphenol, benzopyran-2-one, and tetrahydro-5,6,7,7a-benzofuranone. The concentration of these compounds decreased significantly during incubation. The colonized TGF was mixed with peat (P) in a range of 100%:0%, 50%:50%, 20%:80%, and 0%:100% TGF/P (w/w), respectively, to assess suitability for plant growth. Germination of tomato seeds was assessed three times, i.e., with inoculated TGF that had been incubated for 12, 21, and 26 days. In these tests, 90–100% of the seeds germinated in 50%:50% and 20%:80% TGF/P, whereas on average only 50% of the seeds germinated in pure TGF. Germination was not improved by the microbial inoculants. However, plant fresh weight as well as leaf area of 28-day-old tomato plants were significantly increased in all treatments where C. ligniaria F/TGF15 was inoculated compared to the control treatment without microbial inoculants. Colonization with C. ligniaria also protected the substrate from uncontrolled colonization by other fungi. The excellent colonization of TGF by the selected plant-health promoting bacteria in combination with the fungus C. ligniaria offers the possibility to create disease suppressive substrate, meanwhile replacing 20% to 50% of peat in potting soil by TGF
THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE
Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research
Morphological Instabilities in a growing Yeast Colony: Experiment and Theory
We study the growth of colonies of the yeast Pichia membranaefaciens on
agarose film. The growth conditions are controlled in a setup where nutrients
are supplied through an agarose film suspended over a solution of nutrients. As
the thickness of the agarose film is varied, the morphology of the front of the
colony changes. The growth of the front is modeled by coupling it to a
diffusive field of inhibitory metabolites. Qualitative agreement with
experiments suggests that such a coupling is responsible for the observed
instability of the front.Comment: RevTex, 4 pages and 3 figure
Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics
Implementing health research through academic and clinical partnerships : a realistic evaluation of the Collaborations for Leadership in Applied Health Research and Care (CLAHRC)
Background: The English National Health Service has made a major investment in nine partnerships between
higher education institutions and local health services called Collaborations for Leadership in Applied Health
Research and Care (CLAHRC). They have been funded to increase capacity and capability to produce and
implement research through sustained interactions between academics and health services. CLAHRCs provide a
natural ‘test bed’ for exploring questions about research implementation within a partnership model of delivery.
This protocol describes an externally funded evaluation that focuses on implementation mechanisms and
processes within three CLAHRCs. It seeks to uncover what works, for whom, how, and in what circumstances.
Design and methods: This study is a longitudinal three-phase, multi-method realistic evaluation, which
deliberately aims to explore the boundaries around knowledge use in context. The evaluation funder wishes to see
it conducted for the process of learning, not for judging performance. The study is underpinned by a conceptual
framework that combines the Promoting Action on Research Implementation in Health Services and Knowledge to
Action frameworks to reflect the complexities of implementation. Three participating CLARHCS will provide indepth
comparative case studies of research implementation using multiple data collection methods including
interviews, observation, documents, and publicly available data to test and refine hypotheses over four rounds of
data collection. We will test the wider applicability of emerging findings with a wider community using an
interpretative forum.
Discussion: The idea that collaboration between academics and services might lead to more applicable health
research that is actually used in practice is theoretically and intuitively appealing; however the evidence for it is
limited. Our evaluation is designed to capture the processes and impacts of collaborative approaches for
implementing research, and therefore should contribute to the evidence base about an increasingly popular (e.g.,
Mode two, integrated knowledge transfer, interactive research), but poorly understood approach to knowledge
translation. Additionally we hope to develop approaches for evaluating implementation processes and impacts
particularly with respect to integrated stakeholder involvement
Finding one's way in proteomics: a protein species nomenclature
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available
SN 2023ixf in Messier 101: Photo-ionization of Dense, Close-in Circumstellar Material in a Nearby Type II Supernova
We present UV/optical observations and models of supernova (SN) 2023ixf, a
type II SN located in Messier 101 at 6.9 Mpc. Early-time ("flash") spectroscopy
of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines
of H I, He I/II, C IV, and N III/IV/V with a narrow core and broad, symmetric
wings arising from the photo-ionization of dense, close-in circumstellar
material (CSM) located around the progenitor star prior to shock breakout.
These electron-scattering broadened line profiles persist for 8 days with
respect to first light, at which time Doppler broadened features from the
fastest SN ejecta form, suggesting a reduction in CSM density at cm. The early-time light curve of SN2023ixf shows peak absolute
magnitudes (e.g., mag, mag) that are mag brighter than typical type II supernovae, this photometric boost also
being consistent with the shock power supplied from CSM interaction. Comparison
of SN 2023ixf to a grid of light curve and multi-epoch spectral models from the
non-LTE radiative transfer code CMFGEN and the radiation-hydrodynamics code
HERACLES suggests dense, solar-metallicity, CSM confined to cm and a progenitor mass-loss rate of
Myr. For the assumed progenitor wind velocity of km
s, this corresponds to enhanced mass-loss (i.e., ``super-wind'' phase)
during the last 3-6 years before explosion.Comment: 18 pages, 8 figures. Submitted to ApJ
- …