2,588 research outputs found

    Madison County, Kentucky Hazardous Materials Commodity Flow Analysis

    Get PDF
    The results of a commodity flow analysis of hazardous materials for KY Highway 21 (KY-0021) and KY Highway 627 (KY-0627) conducted by Western Kentucky University, in partnership with the Madison County Local Emergency Planning Committee (LEPC), are presented within this report. This report specifically focuses on the portions of these highways located in Madison County, Kentucky. Figure 1.1 shows the location of Madison County in relationship to the state of Kentucky. The purpose of this report is to present information regarding the patterns of hazardous materials transportation along KY-0021 and KY-0627 as observed from August 4, 2014 through August 15, 2014. This report also provides an analysis of incidents involving hazardous materials over the period of 2005 through 2014 in Madison County. Finally, this report summarizes these observations and provides recommendations based on these observations. The commodity flow analysis was necessary in order to provide the Madison County LEPC with information about hazardous materials transport patterns so that they can better prepare for potential incidents and releases of hazardous materials along KY-0021 and KY-0627. Analysis of hazmat incidents in Madison County provided an evaluation of significant hotspots where further risk assessments should be conducted. The data collected will assist in the emergency planning process by providing valuable information about frequently observed hazardous materials within the duration of the study

    On the chromatic roots of generalized theta graphs

    Full text link
    The generalized theta graph \Theta_{s_1,...,s_k} consists of a pair of endvertices joined by k internally disjoint paths of lengths s_1,...,s_k \ge 1. We prove that the roots of the chromatic polynomial $pi(\Theta_{s_1,...,s_k},z) of a k-ary generalized theta graph all lie in the disc |z-1| \le [1 + o(1)] k/\log k, uniformly in the path lengths s_i. Moreover, we prove that \Theta_{2,...,2} \simeq K_{2,k} indeed has a chromatic root of modulus [1 + o(1)] k/\log k. Finally, for k \le 8 we prove that the generalized theta graph with a chromatic root that maximizes |z-1| is the one with all path lengths equal to 2; we conjecture that this holds for all k.Comment: LaTex2e, 25 pages including 2 figure

    Matrix Pencils and Entanglement Classification

    Full text link
    In this paper, we study pure state entanglement in systems of dimension 2mn2\otimes m\otimes n. Two states are considered equivalent if they can be reversibly converted from one to the other with a nonzero probability using only local quantum resources and classical communication (SLOCC). We introduce a connection between entanglement manipulations in these systems and the well-studied theory of matrix pencils. All previous attempts to study general SLOCC equivalence in such systems have relied on somewhat contrived techniques which fail to reveal the elegant structure of the problem that can be seen from the matrix pencil approach. Based on this method, we report the first polynomial-time algorithm for deciding when two 2mn2\otimes m\otimes n states are SLOCC equivalent. Besides recovering the previously known 26 distinct SLOCC equivalence classes in 23n2\otimes 3\otimes n systems, we also determine the hierarchy between these classes

    Dielectrophoresis-Driven Spreading of Immersed Liquid Droplets

    Get PDF
    In recent years electrowetting-on-dielectric (EWOD) has become an effective tool to control partial wetting. EWOD uses the liquid−solid interface as part of a capacitive structure that allows capacitive and interfacial energies to adjust by changes in wetting when the liquid−solid interface is charged due to an applied voltage. An important aspect of EWOD has been its applications in micro fluidics in chemistry and biology and in optical devices and displays in physics and engineering. Many of these rely on the use of a liquid droplet immersed in a second liquid due to the need either for neutral buoyancy to overcome gravity and shield against impact shocks or to encapsulate the droplet for other reasons, such as in microfluidic-based DNA analyses. Recently, it has been shown that nonwetting oleophobic surfaces can be forcibly wetted by nonconducting oils using nonuniform electric fields and an interface-localized form of liquid dielectrophoresis (dielectrowetting). Here we show that this effect can be used to create films of oil immersed in a second immiscible fluid of lower permittivity. We predict that the square of the thickness of the film should obey a simple law dependent on the square of the applied voltage and with strength dependent on the ratio of difference in permittivity to the liquid-fluid interfacial tension, Δε/γLF. This relationship is experimentally confirmed for 11 liquid−air and liquid−liquid combinations with Δε/γLF having a span of more than two orders of magnitude. We therefore provide fundamental understanding of dielectrowetting for liquid-in-liquid systems and also open up a new method to determine liquid−liquid interfacial tensions

    Altered Blood Flow Response to Small Muscle Mass Exercise in Cancer Survivors Treated With Adjuvant Therapy

    Get PDF
    Citation: Didier, K. D., Ederer, A. K., Reiter, L. K., Brown, M., Hardy, R., Caldwell, J., . . . Ade, C. J. (2017). Altered Blood Flow Response to Small Muscle Mass Exercise in Cancer Survivors Treated With Adjuvant Therapy. Journal of the American Heart Association, 6(2), 9. doi:10.1161/jaha.116.004784Background-Adjuvant cancer treatments have been shown to decrease cardiac function. In addition to changes in cardiovascular risk, there are several additional functional consequences including decreases in exercise capacity and increased incidence of cancer-related fatigue. However, the effects of adjuvant cancer treatment on peripheral vascular function during exercise in cancer survivors have not been well documented. We investigated the vascular responses to exercise in cancer survivors previously treated with adjuvant cancer therapies. Methods and Results-Peripheral vascular responses were investigated in 11 cancer survivors previously treated with adjuvant cancer therapies (age 58 +/- 6 years, 34 +/- 30 months from diagnosis) and 9 healthy controls group matched for age, sex, and maximal voluntary contraction. A dynamic handgrip exercise test at 20% maximal voluntary contraction was performed with simultaneous measurements of forearm blood flow and mean arterial pressure. Forearm vascular conductance was calculated from forearm blood flow and mean arterial pressure. Left ventricular ejection time index (LVETi) was derived from the arterial pressure wave form. Forearm blood flow was attenuated in cancer therapies compared to control at 20% maximal voluntary contraction (189.8 +/- 53.8 vs 247.9 +/- 80.3 mL.min (1), respectively). Forearm vascular conductance was not different between groups at rest or during exercise. Mean arterial pressure response to exercise was attenuated in cancer therapies compared to controls (107.8 +/- 10.8 vs 119.2 +/- 16.2 mm Hg). LEVTi was lower in cancer therapies compared to controls. Conclusions-These data suggest an attenuated exercise blood flow response in cancer survivors approximate to 34 months following adjuvant cancer therapy that may be attributed to an attenuated increase in mean arterial pressure

    Near axisymmetric partial wetting using interface-localized liquid dielectrophoresis

    Get PDF
    The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapour phases. Liquid dielectrophoresis (L-DEP) can produce wetting on normally non-wetting surfaces, without modification of the surface topography or chemistry. L-DEP is a bulk force acting on the dipoles of a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. However, if this force is induced by a non-uniform electric field across a solid -liquid interface, it can be used to enhance and control the wetting of a dielectric liquid. Recently, it was reported theoretically and experimentally that this approach can cause a droplet of oil to spread along parallel interdigitated electrodes thus forming a stripe of liquid. Here we show that by using spiral shaped electrodes actuated with four 90º successive phase shifted signals, a near axisymmetric spreading of droplets can be achieved. Experimental observations show that the induced wetting can achieve film formation, an effect not possible with electrowetting. We show that the spreading is reversible thus enabling a wide range of partial wetting droplet states to be achieved in a controllable manner. Furthermore, we find that the cosine of the contact angle has a quadratic dependence on applied voltage during spreading and deduce a scaling law for the dependence of the strength of the effect on the electrode size

    The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    Get PDF
    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include 6 of the candidate young systems. 45 of the binary systems are close (mainly contact) systems; one shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 \pm 0.0000071d, with flat-bottomed primary eclipses, and a derived distance consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).Comment: 66 pages, 27 figures, accepted to Astronomical Journal. Minor typographical corrections and update to author affiliation

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap
    corecore