213 research outputs found
James Hutton’s geological tours of Scotland : romanticism, literary strategies, and the scientific quest
This article explores a somewhat neglected part of the story of the emergence of geology as a science and discourse in the late eighteenth century – James Hutton’s posthumously published accounts of the geological tours of Scotland that he undertook in the years 1785 to 1788 in search of empirical evidence in support of his theory of the Earth and that he intended to include in the projected third volume of his Theory of the Earth of 1795. The article brings some of the assumptions and techniques of literary criticism to bear on Hutton’s scientific travel writing in order to open up new connections between geology, Romantic aesthetics and eighteenth-century travel writing about Scotland. Close analysis of Hutton’s accounts of his field trips to Glen Tilt, Galloway and Arran, supplemented by later accounts of the discoveries at Jedburgh and Siccar Point, reveals the interplay between desire, travel and the scientific quest and foregrounds the textual strategies that Hutton uses to persuade his readers that they share in the experience of geological discovery and interpretation as ‘virtual witnesses’. As well as allowing us to revisit the interrelation between scientific theory and discovery, this article concludes that Hutton was a much better writer than he has been given credit for and suggests that if these geological tours had been published in 1795 they would have made it impossible for critics to dismiss him as an armchair geologist
The Antiquity and Evolutionary History of Social Behavior in Bees
A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives
Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens
There is accumulating evidence that the nucleus accumbens (NAc) has an important role in the pathophysiology of depression. As the NAc is a key component in the neural circuitry of reward, it has been hypothesized that anhedonia, a core symptom of depression, might be related to dysfunction of this brain region. Neuronal morphology and expression of plasticity-related molecules were examined in the NAc of rats displaying anhedonic behavior (measured in the sucrose-consumption test) in response to chronic mild stress. To demonstrate the relevance of our measurements to depression, we tested whether the observed changes were sensitive to reversal with antidepressants (imipramine and fluoxetine). Data show that animals displaying anhedonic behavior display an hypertrophy of medium spiny neurons in the NAc and, in parallel, have increased expression of the genes encoding for brain-derived neurotrophic factor, neural cell adhesion molecule and synaptic protein synapsin 1. Importantly, the reversal of stress-induced anhedonia by antidepressants is linked to a restoration of gene-expression patterns and dendritic morphology in the NAc. Using an animal model of depression, we show that stress induces anhedonic behavior that is associated with specific changes in the neuronal morphology and in the gene-expression profile of the NAc that are effectively reversed after treatment with antidepressants.The present work was funded by the Portuguese Foundation for Technology (FCT), project PTDC/SAU-NEU/105180/2008. FM and PL are recipients of postdoctoral fellowships and MM is recipient of a doctoral fellowship, all from FCT, Portugal
Handcycling: training effects of a specific dose of upper body endurance training in females
Purpose: This study aims to evaluate a handcycling training protocol based on ACSM guidelines in a well-controlled laboratory setting. Training responses of a specific dose of handcycling training were quantified in a homogeneous female subject population to obtain a more in depth understanding of physiological mechanisms underlying adaptations in upper body training. Methods: 22 female able-bodied participants were randomly divided in a training (T) and control group (C). T received 7-weeks of handcycling training, 3 × 30 min/week at 65 % heart rate reserve (HRR). An incremental handcycling test was used to determine local, exercise-specific adaptations. An incremental cycling test was performed to determine non-exercise-specific central/cardiovascular adaptations. Peak oxygen uptake (peakVO2), heart rate (peakHR) and power output (peakPO) were compared between T and C before and after training. Results: T completed the training sessions at 65 ± 3 % HRR, at increasing power output (59.4 ± 8.2 to 69.5 ± 8.9 W) over the training program. T improved on handcycling peakVO2 (+18.1 %), peakPO (+31.9 %), and peakHR (+4.0 %). No improvements were found in cycling parameters. Conclusion: Handcycling training led to local, exercise-specific improvements in upper body parameters. Results could provide input for the design of effective evidence-based training programs specifically aimed at upper body endurance exercise in females
Labelling and Family Resemblance in the discrimination of polymorphous categories by pigeons
publication-status: Acceptedtypes: Article© 2011 Springer Verlag. This is a post print version of the article published in Animal Cognition, 2011, 14 (1), pp 21-34. The final publication is available at link.springer.comTwo experiments examined whether pigeons discriminate polymorphous categories on the basis of a single highly predictive feature or overall similarity. In the first experiment, pigeons were trained to discriminate between categories of photographs of complex real objects. Within these pictures, single features had been manipulated to produce a highly salient texture cue. Either the picture or the texture provided a reliable cue for discrimination during training, but in probe tests, the picture and texture cues were put into conflict. Some pigeons showed a significant tendency to discriminate on the basis of the picture cue (overall similarity or family resemblance), whereas others appeared to rely on the manipulated texture cue. The second experiment used artificial polymorphous categories in which one dimension of the stimulus provided a completely reliable cue to category membership, whereas three other dimensions provided cues that were individually unreliable but collectively provided a completely reliable basis for discrimination. Most pigeons came under the control of the reliable cue rather than the unreliable cues. A minority, however, came under the control of single dimensions from the unreliable set. We conclude that cue salience can be more important than cue reliability in determining what features will control behavior when multiple cues are available
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
The Eat Smart Study: A randomised controlled trial of a reduced carbohydrate versus a low fat diet for weight loss in obese adolescents
Background Despite the recognition of obesity in young people as a key health issue, there is limited evidence to inform health professionals regarding the most appropriate treatment options. The Eat Smart study aims to contribute to the knowledge base of effective dietary strategies for the clinical management of the obese adolescent and examine the cardiometablic effects of a reduced carbohydrate diet versus a low fat diet. Methods and design Eat Smart is a randomised controlled trial and aims to recruit 100 adolescents over a 2½ year period. Families will be invited to participate following referral by their health professional who has recommended weight management. Participants will be overweight as defined by a body mass index (BMI) greater than the 90th percentile, using CDC 2000 growth charts. An accredited 6-week psychological life skills program ‘FRIENDS for Life’, which is designed to provide behaviour change and coping skills will be undertaken prior to volunteers being randomised to group. The intervention arms include a structured reduced carbohydrate or a structured low fat dietary program based on an individualised energy prescription. The intervention will involve a series of dietetic appointments over 24 weeks. The control group will commence the dietary program of their choice after a 12 week period. Outcome measures will be assessed at baseline, week 12 and week 24. The primary outcome measure will be change in BMI z-score. A range of secondary outcome measures including body composition, lipid fractions, inflammatory markers, social and psychological measures will be measured. Discussion The chronic and difficult nature of treating the obese adolescent is increasingly recognised by clinicians and has highlighted the need for research aimed at providing effective intervention strategies, particularly for use in the tertiary setting. A structured reduced carbohydrate approach may provide a dietary pattern that some families will find more sustainable and effective than the conventional low fat dietary approach currently advocated. This study aims to investigate the acceptability and effectiveness of a structured reduced dietary carbohydrate intervention and will compare the outcomes of this approach with a structured low fat eating plan. Trial Registration: The protocol for this study is registered with the International Clinical Trials Registry (ISRCTN49438757)
Recommended from our members
Neural representation of reward in recovered depressed patients
These findings support the view that abnormal neural responses to reward may be an endophenotype for depression and a potential target for intervention and prevention strategies
Prefrontal Norepinephrine Determines Attribution of “High” Motivational Salience
Intense motivational salience attribution is considered to have a major role in the development of different psychopathologies. Numerous brain areas are involved in “normal” motivational salience attribution processes; however, it is not clear whether common or different neural mechanisms also underlie intense motivational salience attribution. To elucidate this a brain area and a neural system had to be envisaged that were involved only in motivational salience attribution to highly salient stimuli. Using intracerebral microdialysis, we found that natural stimuli induced an increase in norepinephrine release in the medial prefrontal cortex of mice proportional to their salience, and that selective prefrontal norepinephrine depletion abolished the increase of norepinephrine release in the medial prefrontal cortex induced by exposure to appetitive (palatable food) or aversive (light) stimuli independently of salience. However, selective norepinephrine depletion in the medial prefrontal cortex impaired the place conditioning induced exclusively by highly salient stimuli, thus indicating that prefrontal noradrenergic transmission determines approach or avoidance responses to both reward- and aversion-related natural stimuli only when the salience of the unconditioned natural stimulus is high enough to induce sustained norepinephrine outflow. This affirms that prefrontal noradrenergic transmission determines motivational salience attribution selectively when intense motivational salience is processed, as in conditions that characterize psychopathological outcomes
Neural Correlates of Appetite and Hunger-Related Evaluative Judgments
How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value
- …