194 research outputs found

    Incidence of Bovine Leptospriosis in Iowa

    Get PDF
    A survey of the incidence of bovine leptospriosis in 15 counties in Iowa was made using the rapid plate and capillary tube test as developed by Stoenner. A statistical correction technique was applied in an effort to approximate the true incidence

    Beyond words: Expressive arts therapy in individual and group process in recovery from trauma

    Get PDF
    This paper describes expressive arts therapies that are interventions for the treatment of trauma. A literature review of this broad topic is narrowed to define art therapy used in conjunction with talk therapy, and provides brief examples from dance movement therapy, visual arts therapy, poetry-journaling-storytelling therapy, and sound-music therapy. Recent innovations in the field include the use of body-oriented interventions and group processes. When thinking about trauma, the body is a positive and negative reservoir of memory, and trauma may be trapped in the body. The author reviews the overlap between contemporary art, contemporary dance movement analysis, and forms of innovative art therapy where the medium of art is employed to express non-verbal emotional states. Expressive arts therapy and performance art may also share as a focus, movement as an agent of change, and healing through the supportive interaction of the participants. In the appendix, the author has proposed a series of art experiential tools for counselors

    Comparison of serological techniques for the diagnosis of leptospirosis.

    Get PDF
    http://www.worldcat.org/oclc/1111874

    Aquaporins in Saccharomyces: Genetic and functional distinctions between laboratory and wild-type strains

    Get PDF
    Aquaporin water channel proteins mediate the transport of water across cell membranes in numerous species. The Saccharomyces genome data base contains an open reading frame (here designated AQY1) that encodes a protein with strong homology to aquaporins. AQY1 from laboratory and wild-type strains of Saccharomyces were expressed in Xenopus oocytes to determine the coefficients of osmotic water permeability (Pf). Oocytes injected with wild-type AQY1 cRNAs exhibit high Pf values, whereas oocytes injected with AQY1 cRNAs from laboratory strains exhibit low Pf values and have reduced levels of Aqy1p due to two amino acid substitutions. When the AQY1 gene was deleted from a wild-type yeast and cells were cultured in vitro with cycled hypo-osmolar or hyper-osmolar stresses, the AQY1 null yeast showed significantly improved viability when compared with the parental wild-type strain. We conclude that Saccharomyces cerevisiae contains at least one aquaporin gene, but it is not functional in laboratory strains due to apparent negative selection pressures resulting from in vitro methods

    Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver

    Get PDF
    Aquaglyceroporins form the subset of the aquaporin water channel family that is permeable to glycerol and certain small, uncharged solutes. AQP9 has unusually broad solute permeability and is expressed in hepatocyte plasma membranes. Proteoliposomes reconstituted with expressed, purified rat AQP9 protein were compared with simple liposomes for solute permeability. At pH 7.5, AQP9 proteoliposomes exhibited Hg(2+)-inhibitable glycerol and urea permeabilities that were increased 63-fold and 90-fold over background. beta-Hydroxybutyrate permeability was not increased above background, and osmotic water permeability was only minimally elevated. During starvation, the liver takes up glycerol for gluconeogenesis. Expression of AQP9 in liver was induced up to 20-fold in rats fasted for 24-96 h, and the AQP9 level gradually declined after refeeding. No changes in liver AQP9 levels were observed in rats fed ketogenic diets or high-protein diets, but AQP9 levels were elevated in livers of rats made diabetic by streptozotocin injection. When blood glucose levels of the diabetic rats were restored to normal by insulin treatments, the AQP9 levels returned to baseline. Confocal immunofluorescence revealed AQP9 immunostaining on the sinusoidal surfaces of hepatocyte plates throughout the livers of control rats. Denser immunostaining was observed in the same distribution in livers of fasted and streptozotocin-treated rats. We conclude that AQP9 serves as membrane channel in hepatocytes for glycerol and urea at physiological pH, but not for beta-hydroxybutyrate. In addition, levels of AQP9 expression fluctuate depending on the nutritional status of the subject and the circulating insulin levels

    Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice

    Get PDF
    Expressed in liver, aquaglyceroporin-9 (AQP9) is permeated by glycerol, arsenite, and other small, neutral solutes. To evaluate a possible protective role, AQP9-null mice were evaluated for in vivo arsenic toxicity. After injection with NaAsO(2), AQP9-null mice suffer reduced survival rates (LD(50), 12 mg/kg) compared with WT mice (LD(50), 15 mg/kg). The highest tissue level of arsenic is in heart, with AQP9-null mice accumulating 10-20 times more arsenic than WT mice. Within hours after NaAsO(2) injection, AQP9-null mice sustain profound bradycardia, despite normal serum electrolytes. Increased arsenic levels are also present in liver, lung, spleen, and testis of AQP9-null mice. Arsenic levels in the feces and urine of AQP9-null mice are only approximately 10% of the WT levels, and reduced clearance of multiple arsenic species by the AQP9-null mice suggests that AQP9 is involved in the export of multiple forms of arsenic. Immunohistochemical staining of liver sections revealed that AQP9 is most abundant in basolateral membrane of hepatocytes adjacent to the sinusoids. AQP9 is not detected in heart or kidney by PCR or immunohistochemistry. We propose that AQP9 provides a route for excretion of arsenic by the liver, thereby providing partial protection of the whole animal from arsenic toxicity

    Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence

    Get PDF
    Human and rodent erythrocytes are known to be highly permeable to glycerol. Aquaglyceroporin aquaporin (AQP)3 is the major glycerol channel in human and rat erythrocytes. However, AQP3 expression has not been observed in mouse erythrocytes. Here we report the presence of an aquaglyceroporin, AQP9, in mouse erythrocytes. AQP9 levels rise as reticulocytes mature into erythrocytes and as neonatal pups develop into adult mice. Mice bearing targeted disruption of both alleles encoding AQP9 have erythrocytes that appear morphologically normal. Compared with WT cells, erythrocytes from AQP9-null mice are defective in rapid glycerol transport across the cell membrane when measured by osmotic lysis, [(14)C]glycerol uptake, or stopped-flow light scattering. In contrast, the water and urea permeabilities are intact. Although the physiological role of glycerol in the normal function of erythrocytes is not clear, plasma glycerol is an important substrate for lipid biosynthesis of intraerythrocytic malarial parasites. AQP9-null mice at the age of 4 months infected with Plasmodium berghei survive longer during the initial phase of infection compared with WT mice. We conclude that AQP9 is the major glycerol channel in mouse erythrocytes and suggest that this transport pathway may contribute to the virulence of intraerythrocytic stages of malarial infection

    Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations

    Get PDF
    A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection

    Arsenic and Antimony Transporters in Eukaryotes

    Get PDF
    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters

    Beyond water homeostasis:diverse functional roles of mammalian aquaporins

    Get PDF
    Background - Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. Scope of review - AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. Major conclusions - As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. General significance - Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies
    • …
    corecore