79 research outputs found

    Ambientes obesogénicos nos alunos do ensino secundário: sensibilização da Educação Física

    Get PDF
    Resumen: Introducción: los actuales modelos ecológicos introducen el entorno como una variable influyente e interrelacionada con el comportamiento. Este paradigma sugiere que la evolución de los entornos hacia ambientes cada vez más obesogénicos son la principal causa del fuerte incremento de la obesidad. Objetivos: esta investigación se planteó estudiar los entornos relacionados con la actividad física (AF) y el sedentarismo en el hogar, en un grupo de adolescentes de tercero de la ESO. Métodos: esta investigación se enmarca dentro del proyecto HEYYOU (Healthy Environment, Healthy Youth). 45 alumnos/as (10 chicos y 35 chicas) rellenaron de forma voluntaria un cuestionario diseñado al efecto. Con anterioridad se aplicó un estudio. Resultados y discusión: como factores asociados significativamente a una mayor AF encontramos las variables de pasear al perro y el apoyo de los padres para la práctica de AF. En el polo del entorno sedentario, el hecho de disponer de videoconsola en la propia habitación se asocia significativamente con un mayor tiempo de juego a la misma. Esta investigación destaca la importancia de actuar desde el área de la Educación Física, mediante micro-intervenciones divulgativas como la llevada a cabo, para reflexionar y hacer partícipe al propio alumnado como agente activo para mejorar su entorno asociado a la salud. Conclusiones: los resultados concluyen que el grupo participante se encuentra más cercano a un entorno leptogénico moderado que a los entornos obesogénicos.Abstract: Introduction: the environment is considered by the current ecological models as an influential and behavior-related variable. This paradigm suggest that the evolution of the environments towards obesogenic settings is the main cause of the increase in obesity. Aim: the aim of this research was to study the home environments related to physical activity (PA) and sedentary habits in a group of 3rd year secondary school adolescents. Methods: this research is part of the HEYYOU project (Healthy Environment, Healthy Youth). 45 students (10 boys and 35 girls) volunteered to complete an ad-hoc questionnaire. Previously, a pilot study was performed. Results y discussion: factors associated with a higher PA were walking the dog, and the parents support for PA practice. On the side of the sedentary lifestyle, having a game console in the child´s own bedroom is significantly associated with a highest videogame playing time. This research highlights the importance of acting from Physical Education, by means of educational micro-interventions, as the one which has been carried out, to promote the students´ involvement and reflection as active agents to improve their health-related environment. Conclusions: The results show the sample is closer to a moderate leptogenic environment than to an obesogenic environment.Resumo: Introdução: Os atuais modelos ecológicos introduzem o ambiente como uma variável influente e inter-relacionada ao comportamento. Esse paradigma sugere que a evolução dos ambientes em direção a ambientes cada vez mais obesogênicos são a principal causa do forte aumento da obesidade. Objectivos: Esta pesquisa buscou estudar os ambientes relacionados à atividade física (AF) e sedentarismo em casa, em um grupo de adolescentes do primeiro do escola secundária. Métodos: Esta pesquisa faz parte do projeto HEYYOU (Healthy Environment, Healthy Youth). 45 estudantes (10 meninos e 35 meninas) preencheram voluntariamente um questionário elaborado para esse fim. Um estudo piloto foi feito anteriormente. Resultados e discussão: Como fatores significativamente associados à AF mais alta, encontramos as variáveis passear com o cachorro e apoio dos pais para a prática da AF, respectivamente. No pólo do ambiente sedentário, o fato de ter um console de videogame na própria sala está significativamente associado a um tempo de jogo mais longo. Esta pesquisa destaca a importância de atuar na área de Educação Física, por meio de microintervenções informativas como a realizada, para refletir e envolver os próprios alunos como agentes ativos para melhorar seu ambiente associado à saúde. Conclusões: os resultados concluem que o grupo participante está mais próximo de um ambiente leptogênico moderado do que de ambientes obesogênicos

    Bionemo: molecular information on biodegradation metabolism

    Get PDF
    Bionemo (http://bionemo.bioinfo.cnio.es) stores manually curated information about proteins and genes directly implicated in the Biodegradation metabolism. When possible, the database includes information on sequence, domains and structures for proteins; and sequence, regulatory elements and transcription units for genes. Thus, Bionemo is a unique resource that complements other biodegradation databases such as the University of Minessota Biocatalysis/Biodegradation Database, or Metarouter, which focus more on the biochemical aspects of biodegradation than in the nature of the biomolecules carrying out the reactions. Bionemo has been built by manually associating sequences database entries to biodegradation reactions, using the information extracted from published articles. Information on transcription units and their regulation was also extracted from the literature for biodegradation genes, and linked to the underlying biochemical network. In its current version, Bionemo contains sequence information for 324 reactions and transcription regulation information for more than 100 promoters and 100 transcription factors. The information in the Bionemo database is available via a web server and the full database is also downloadable as a PostgresSQL dump. To facilitate the programmatic use of the information contained in the database, an object-oriented Perl API is also provided

    The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

    Get PDF
    [EN] Tomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expansion during the fruit enlargement phase also increased. Furthermore, the larger amount of biomass partitioned to the fruit relied on the greater sink strength of the fruits induced by the increased activity of sucrose-metabolising enzymes. Additionally, our results suggest a positive role of SlCDF4 in the gibberellin-signalling pathway through the modulation of GA(4) biosynthesis. Finally, the overexpression of SlCDF4 also promoted changes in the profile of carbon and nitrogen compounds related to fruit quality. Overall, our results unveil SlCDF4 as a new key factor controlling tomato size and composition.Renau-Morata, B.; Carrillo, L.; Cebolla Cornejo, J.; Molina Romero, RV.; Martí-Renau, R.; Domínguez-Figueroa, J.; Vicente-Carbajosa, J.... (2020). The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling. Scientific Reports. 10(1):1-14. https://doi.org/10.1038/s41598-020-67537-x1141011FAO. Crops production database. FAOSTAT. Latest update: 04/03/2020. Food and Agriculture Organization of the United Nations. Rome https://www.fao.org/faostat (2018).Willcox, J. K., Catignani, G. L. & Lazarus, S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43, 1–18. https://doi.org/10.1080/10408690390826437 (2003).Bai, Y. L. & Lindhout, P. Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Ann. Bot. 100, 1085–1094. https://doi.org/10.1093/aob/mcm150 (2007).Gascuel, Q., Diretto, G., Monforte, A. J., Fortes, A. M. & Granell, A. Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00652 (2017).Handa, A. K., Anwar, R. & Mattoo, A. K. in Fruit Ripening Physiology, Signaling and Genomics (eds Nath, P. et al.) 259–290 (CABI, 2014).van der Knaap, E. et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00227 (2014).Okello, R. C. O., Heuvelink, E., de Visser, P. H. B., Struik, P. C. & Marcelis, L. F. M. What drives fruit growth?. Funct. Plant Biol. 42(9), 817–827. https://doi.org/10.1071/fp15060 (2015).Bertin, N. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95, 439–447. https://doi.org/10.1093/aob/mci042 (2005).Smith, M. R., Rao, I. M. & Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01889 (2018).Osorio, S., Ruan, Y. L. & Fernie, A. R. An update on source-to-sink carbon partitioning in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00516 (2014).Ho, L. C. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation Ito the quality and yield of tomato. J. Exp. Bot. 47, 1239–1243. https://doi.org/10.1093/jxb/47.Special_Issue.1239 (1996).Koch, K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235–246. https://doi.org/10.1016/j.pbi.2004.03.014 (2004).Carrari, F. et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142, 1380–1396. https://doi.org/10.1104/pp.106.088534 (2006).Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528. https://doi.org/10.1104/pp.108.133967 (2009).Ozga, J. A. & Reinecke, D. M. Hormonal interactions in fruit development. J. Plant Growth Regul. 22, 73–81. https://doi.org/10.1007/s00344-003-0024-9 (2003).Liu, S. Y. et al. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci. Rep. https://doi.org/10.1038/s41598-018-21315-y (2018).Serrani, J. C., Sanjuan, R., Ruiz-Rivero, O., Fos, M. & Garcia-Martinez, J. L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145, 246–257. https://doi.org/10.1104/pp.107.098335 (2007).McAtee, P., Karim, S., Schaffer, R. & David, K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. https://doi.org/10.3389/fpls.2013.00079 (2013).Kataoka, K., Yashiro, Y., Habu, T., Sunamoto, K. & Kitajima, A. The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci. Hortic. 123, 228–233. https://doi.org/10.1016/j.scienta.2009.09.001 (2009).Zhang, C. X., Tanabe, K., Tamura, F., Itai, A. & Yoshida, M. Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul. 52, 161–172. https://doi.org/10.1007/s10725-007-9187-x (2007).Shinozaki, Y. et al. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. https://doi.org/10.1038/s41467-017-02782-9 (2018).Ariizumi, T., Shinozaki, Y. & Ezura, H. Genes that influence yield in tomato. Breed. Sci. 63, 3–13. https://doi.org/10.1270/jsbbs.63.3 (2013).Azzi, L. et al. Fruit growth-related genes in tomato. J. Exp. Bot. 66, 1075–1086. https://doi.org/10.1093/jxb/eru527 (2015).Lemaire-Chamley, M. et al. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 139, 750–769. https://doi.org/10.1104/pp.105.063719 (2005).Tanksley, S. D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16, S181–S189. https://doi.org/10.1105/tpc.018119 (2004).Allan, A. C. & Espley, R. V. MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci. 23, 693–705. https://doi.org/10.1016/j.tplants.2018.06.001 (2018).Karlova, R. et al. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 65, 4527–4541. https://doi.org/10.1093/jxb/eru316 (2014).Rohrmann, J. et al. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant J. 68, 999–1013. https://doi.org/10.1111/j.1365-313X.2011.04750.x (2011).Zhang, S. B. et al. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Sci. Rep. https://doi.org/10.1038/srep23173 (2016).Corrales, A. R. et al. Characterization of tomato Cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. J. Exp. Bot. 65, 995–1012. https://doi.org/10.1093/jxb/ert451 (2014).Renau-Morata, B. et al. Ectopic Expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions. Front. Plant Sci. 8, 18. https://doi.org/10.3389/fpls.2017.00660 (2017).Guillet, C. et al. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS ONE https://doi.org/10.1371/journal.pone.0036795 (2012).Bourdon, M. et al. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139, 3817–3826. https://doi.org/10.1242/dev.084053 (2012).de Jong, M. et al. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp. Bot. 66, 3405–3416. https://doi.org/10.1093/jxb/erv152 (2015).Serrani, J. C., Fos, M., Atares, A. & Garcia-Martinez, J. L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J. Plant Growth Regul. 26, 211–221. https://doi.org/10.1007/s00344-007-9014-7 (2007).Srivastava, A. & Handa, A. K. Hormonal regulation of tomato fruit development: a molecular perspective. J. Plant Growth Regul. 24, 67–82. https://doi.org/10.1007/s00344-005-0015-0 (2005).Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., Hernandez, M. & Perez, J. A. Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J. Plant Growth Regul. 26, 329–340. https://doi.org/10.1007/s00344-007-9019-2 (2007).Li, Z. M. et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J. Exp. Bot. 63, 1155–1166. https://doi.org/10.1093/jxb/err329 (2012).Wang, F., Sanz, A., Brenner, M. L. & Smith, A. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101, 321–327. https://doi.org/10.1104/pp.101.1.321 (1993).Pattison, R. J. et al. Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol. 168, 1684-U1002. https://doi.org/10.1104/pp.15.00287 (2015).Musseau, C. et al. Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00988 (2017).Shiota, H., Sudoh, T. & Tanaka, I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato. Plant Sci. 171, 277–285. https://doi.org/10.1016/j.plantsci.2006.03.021 (2006).Wang, L. et al. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biol. https://doi.org/10.1186/s12870-017-1212-2 (2017).Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields?. Plant Cell Environ. 29, 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x (2006).D’Aoust, M. A., Yelle, S. & Nguyen-Quoc, B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11, 2407–2418. https://doi.org/10.1105/tpc.11.12.2407 (1999).Liu, T., Hu, Y. Q. & Li, X. X. Characterization of a chestnut FLORICAULA/LEAFY homologous gene. Afr. J. Biotechnol. 10, 3978–3985 (2011).Fridman, E., Carrari, F., Liu, Y. S., Fernie, A. R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789. https://doi.org/10.1126/science.1101666 (2004).Ikeda, H. et al. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, IL8-3. Plant Cell Physiol. 57, 1257–1270. https://doi.org/10.1093/pcp/pcw075 (2016).Ho, L. C. Partitioning of assimilates in fruiting tomato plants. Plant Growth Regul. 2, 277–285. https://doi.org/10.1007/bf00027287 (1984).Beauvoit, B. et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 122, 1–21. https://doi.org/10.1093/aob/mcy057 (2018).Corrales, A. R. et al. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell Environ. 40, 748–764. https://doi.org/10.1111/pce.12894 (2017).Carrari, F. & Fernie, A. R. Metabolic regulation underlying tomato fruit development. J. Exp. Bot. 57, 1883–1897. https://doi.org/10.1093/jxb/erj020 (2006).Osorio, S. et al. Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation. Plant Physiol. 161, 628–643. https://doi.org/10.1104/pp.112.211094 (2013).Gillaspy, G., Bendavid, H. & Gruissem, W. Fruits—a developmental perspective. Plant Cell 5, 1439–1451. https://doi.org/10.1105/tpc.5.10.1439 (1993).Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A. & Garcia-Martinez, J. L. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol. 160, 1581–1596. https://doi.org/10.1104/pp.112.204552 (2012).Chen, S. et al. Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic. Res. https://doi.org/10.1038/hortres.2016.59 (2016).Mignolli, F., Vidoz, M. L., Picciarelli, P. & Mariotti, L. Gibberellins modulate auxin responses during tomato (Solanum lycopersicum L.) fruit development. Physiol. Plant. 165, 768–779. https://doi.org/10.1111/ppl.12770 (2019).De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C. & Vriezen, W. H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 57, 160–170. https://doi.org/10.1111/j.1365-313X.2008.03671.x (2009).Ellul, P. et al. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor. Appl. Genet. 106, 231–238. https://doi.org/10.1007/s00122-002-0928-y (2003).Renau-Morata, R. et al. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crops Prod. 46, 97–104. https://doi.org/10.1016/j.indcrop.2013.01.013 (2013).Cebolla-Cornejo, J., Valcarcel, M., Herrero-Martinez, J. M., Rosello, S. & Nuez, F. High efficiency joint CZE determination of sugars and acids in vegetables and fruits. Electrophoresis 33, 2416–2423. https://doi.org/10.1002/elps.201100640 (2012).Nebauer, S. G. et al. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees. Plant Physiol. Biochem. 80, 105–113. https://doi.org/10.1016/j.plaphy.2014.03.032 (2014).Hoffman, N. E., Ko, K., Milkowski, D. & Pichersky, E. Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene UBI3. Plant Mol. Biol. 17, 1189–1201. https://doi.org/10.1007/bf00028735 (1991).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).Miedes, E. & Lorences, E. P. Changes in cell wall pectin and pectinase activity in apple and tomato fruits during Penicillium expansum infection. J. Sci. Food Agric. 86, 1359–1364 (2006)

    The Arabidopsis Transcription Factor CDF3 Is Involved in Nitrogen Responses and Improves Nitrogen Use Efficiency in Tomato

    Get PDF
    Nitrate is an essential macronutrient and a signal molecule that regulates the expression of multiple genes involved in plant growth and development. Here, we describe the participation of Arabidopsis DNA binding with one finger (DOF) transcription factor CDF3 in nitrate responses and shows that CDF3 gene is induced under nitrate starvation. Moreover, knockout cdf3 mutant plants exhibit nitrate-dependent lateral and primary root modifications, whereas CDF3 overexpression plants show increased biomass and enhanced root development under both nitrogen poor and rich conditions. Expression analyses of 35S::CDF3 lines reveled that CDF3 regulates the expression of an important set of nitrate responsive genes including, glutamine synthetase-1, glutamate synthase-2, nitrate reductase-1, and nitrate transporters NRT2.1, NRT2.4, and NRT2.5 as well as carbon assimilation genes like PK1 and PEPC1 in response to N availability. Consistently, metabolite profiling disclosed that the total amount of key N metabolites like glutamate, glutamine, and asparagine were higher in CDF3-overexpressing plants, but lower in cdf3-1 in N limiting conditions. Moreover, overexpression of CDF3 in tomato increased N accumulation and yield efficiency under both optimum and limiting N supply. These results highlight CDF3 as an important regulatory factor for the nitrate response, and its potential for improving N use efficiency in crops

    Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis

    Full text link
    [EN] DNA-binding with one finger (DOF)-type transcription factors are involved in many fundamental processes in higher plants, from responses to light and phytohormones to flowering time and seed maturation, but their relation with abiotic stress tolerance is largely unknown. Here, we identify the roles of CDF3, an Arabidopsis DOF gene in abiotic stress responses and developmental processes like flowering time. CDF3 is highly induced by drought, extreme temperatures and abscisic acid treatment. The CDF3 T-DNA insertion mutant cdf3-1 is much more sensitive to drought and low temperature stress, whereas CDF3 overexpression enhances the tolerance of transgenic plants to drought, cold and osmotic stress and promotes late flowering. Transcriptome analysis revealed that CDF3 regulates a set of genes involved in cellular osmoprotection and oxidative stress, including the stress tolerance transcription factors CBFs, DREB2A and ZAT12, which involve both gigantea-dependent and independent pathways. Consistently, metabolite profiling disclosed that the total amount of some protective metabolites including -aminobutyric acid, proline, glutamine and sucrose were higher in CDF3-overexpressing plants. Taken together, these results indicate that CDF3 plays a multifaceted role acting on both flowering time and abiotic stress tolerance, in part by controlling the CBF/DREB2A-CRT/DRE and ZAT10/12 modules.We thank Dr Pablo Gonzalez-Melendi and Dr Jan Zouhar for technical handling of the confocal microscope and Dr Rafael Catala for the assistance with the low temperature stress assays. This work was supported by grants from Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA; projects 2009-0004-C01, 2012-0008-C01), Spanish Ministry of Science and Innovation (projects BIO2010-1487, BFU2013-49665-EXP). A.R.C. and J.D.F. were supported by INIA pre-doctoral fellowshipsCorrales, AR.; Carrillo, L.; Lasierra, P.; Nebauer, SG.; Dominguez-Figueroa, J.; Renau-Morata, B.; Pollmann, S.... (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell & Environment. 40(5):748-764. https://doi.org/10.1111/pce.12894S748764405Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., & Genschik, P. (2008). The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. The Plant Cell, 20(8), 2117-2129. doi:10.1105/tpc.108.058941Ahuja, I., de Vos, R. C. H., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664-674. doi:10.1016/j.tplants.2010.08.002Alonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., … Dröge-Laser, W. (2009). A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. The Plant Cell, 21(6), 1747-1761. doi:10.1105/tpc.108.062968BEUVE, N., RISPAIL, N., LAINE, P., CLIQUET, J.-B., OURRY, A., & LE DEUNFF, E. (2004). Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant, Cell and Environment, 27(8), 1035-1046. doi:10.1111/j.1365-3040.2004.01208.xBlümel, M., Dally, N., & Jung, C. (2015). Flowering time regulation in crops — what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32, 121-129. doi:10.1016/j.copbio.2014.11.023Bouche, N., Fait, A., Bouchez, D., Moller, S. G., & Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the  -aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences, 100(11), 6843-6848. doi:10.1073/pnas.1037532100Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125Chen, H., Hwang, J. E., Lim, C. J., Kim, D. Y., Lee, S. Y., & Lim, C. O. (2010). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications, 401(2), 238-244. doi:10.1016/j.bbrc.2010.09.038Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. doi:10.1016/j.plantsci.2004.07.039Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCorrales, A., Carrillo, L., Nebauer, S., Renau-Morata, B., Sánchez-Perales, M., Fernández-Nohales, P., … Medina, J. (2014). Salinity Assay in Arabidopsis. BIO-PROTOCOL, 4(16). doi:10.21769/bioprotoc.1216Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., … Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. doi:10.1093/jxb/ert451Davletova, S., Schlauch, K., Coutu, J., & Mittler, R. (2005). The Zinc-Finger Protein Zat12 Plays a Central Role in Reactive Oxygen and Abiotic Stress Signaling in Arabidopsis. Plant Physiology, 139(2), 847-856. doi:10.1104/pp.105.068254DÉJARDIN, A., SOKOLOV, L. N., & KLECZKOWSKI, L. A. (1999). Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochemical Journal, 344(2), 503-509. doi:10.1042/bj3440503Dubois, M., Skirycz, A., Claeys, H., Maleux, K., Dhondt, S., De Bodt, S., … Inzé, D. (2013). ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis. Plant Physiology, 162(1), 319-332. doi:10.1104/pp.113.216341Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018Fornara, F., Montaigu, A., Sánchez‐Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., … Coupland, G. (2015). The GI – CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal, 81(5), 695-706. doi:10.1111/tpj.12759Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015Fowler, S. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal, 18(17), 4679-4688. doi:10.1093/emboj/18.17.4679Galmés, J., Medrano, H., & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175(1), 81-93. doi:10.1111/j.1469-8137.2007.02087.xGill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016Gilmour, S. J., Fowler, S. G., & Thomashow, M. F. (2004). Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 have Matching Functional Activities. Plant Molecular Biology, 54(5), 767-781. doi:10.1023/b:plan.0000040902.06881.d4Gong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., … Ye, Z. (2010). Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany, 61(13), 3563-3575. doi:10.1093/jxb/erq167Gould, P. D., Locke, J. C. W., Larue, C., Southern, M. M., Davis, S. J., Hanano, S., … Hall, A. (2006). The Molecular Basis of Temperature Compensation in the Arabidopsis Circadian Clock. The Plant Cell, 18(5), 1177-1187. doi:10.1105/tpc.105.039990Han, Q., Kang, G., & Guo, T. (2013). Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 63, 236-244. doi:10.1016/j.plaphy.2012.12.002Hernando-Amado, S., González-Calle, V., Carbonero, P., & Barrero-Sicilia, C. (2012). The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biology, 12(1), 202. doi:10.1186/1471-2229-12-202Zou, H.-F., Zhang, Y.-Q., Wei, W., Chen, H.-W., Song, Q.-X., Liu, Y.-F., … Chen, S.-Y. (2012). The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochemical Journal, 449(2), 373-388. doi:10.1042/bj20110060Hussain, S. S., Kayani, M. A., & Amjad, M. (2011). Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology Progress, 27(2), 297-306. doi:10.1002/btpr.514Imaizumi, T. (2005). FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 309(5732), 293-297. doi:10.1126/science.1110586Ingram, J., & Bartels, D. (1996). THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 377-403. doi:10.1146/annurev.arplant.47.1.377Jarillo, J. A., Del Olmo, I., Gómez-Zambrano, A., Lázaro, A., López-González, L., Miguel, E., … Piñeiro, M. (2008). Photoperiodic control of flowering time: a review. Spanish Journal of Agricultural Research, 6(S1), 221. doi:10.5424/sjar/200806s1-391Izaurralde, E. (1997). The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. The EMBO Journal, 16(21), 6535-6547. doi:10.1093/emboj/16.21.6535Karimi, M., Depicker, A., & Hilson, P. (2007). Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 145(4), 1144-1154. doi:10.1104/pp.107.106989Kim, S. Y., & Nam, K. H. (2010). Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Reports, 29(2), 203-209. doi:10.1007/s00299-009-0813-0Kiyosue, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) inArabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Molecular Biology, 25(5), 791-798. doi:10.1007/bf00028874Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.xLiu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. The Plant Cell, 10(8), 1391. doi:10.2307/3870648Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T. A., … Seki, M. (2008). Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 49(8), 1135-1149. doi:10.1093/pcp/pcn101Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., & Salinas, J. (1999). The Arabidopsis CBF Gene Family Is Composed of Three Genes Encoding AP2 Domain-Containing Proteins Whose Expression Is Regulated by Low Temperature but Not by Abscisic Acid or Dehydration. Plant Physiology, 119(2), 463-470. doi:10.1104/pp.119.2.463Messerli, G., Partovi Nia, V., Trevisan, M., Kolbe, A., Schauer, N., Geigenberger, P., … Zeeman, S. C. (2007). Rapid Classification of Phenotypic Mutants of Arabidopsis via Metabolite Fingerprinting. Plant Physiology, 143(4), 1484-1492. doi:10.1104/pp.106.090795Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19. doi:10.1016/j.tplants.2005.11.002Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., … Coupland, G. (2005). Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. The Plant Cell, 17(8), 2255-2270. doi:10.1105/tpc.105.033464Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xNishiyama, R., Le, D. T., Watanabe, Y., Matsui, A., Tanaka, M., Seki, M., … Tran, L.-S. P. (2012). Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency. PLoS ONE, 7(2), e32124. doi:10.1371/journal.pone.0032124Noguero, M., Atif, R. M., Ochatt, S., & Thompson, R. D. (2013). The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science, 209, 32-45. doi:10.1016/j.plantsci.2013.03.016Novillo, F., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, 104(52), 21002-21007. doi:10.1073/pnas.0705639105OliverosJ.C.(2007)Venny an interactive tool for comparing lists with Venn's diagrams.http://bioinfogp.cnb.csic.es/tools/venny/index.html.Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93Osakabe, Y., Kajita, S., & Osakabe, K. (2011). Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 142(2), 105-117. doi:10.1111/j.1399-3054.2011.01451.xPark, D. H. (1999). Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA Gene. Science, 285(5433), 1579-1582. doi:10.1126/science.285.5433.1579Rajasekaran, L. R., Aspinall, D., & Paleg, L. G. (2000). Physiological mechanism of tolerance of Lycopersicon spp. exposed to salt stress. Canadian Journal of Plant Science, 80(1), 151-159. doi:10.4141/p99-003Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology, 134(4), 1683-1696. doi:10.1104/pp.103.033431Rosso, M. G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., & Weisshaar, B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Molecular Biology, 53(1/2), 247-259. doi:10.1023/b:plan.0000009297.37235.4aRueda-López, M., Crespillo, R., Cánovas, F. M., & Ávila, C. (2008). Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. The Plant Journal, 56(1), 73-85. doi:10.1111/j.1365-313x.2008.03573.xSakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. The Plant Cell, 18(5), 1292-1309. doi:10.1105/tpc.105.035881Sato, Y., & Yokoya, S. (2007). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports, 27(2), 329-334. doi:10.1007/s00299-007-0470-0Sawa, M., Nusinow, D. A., Kay, S. A., & Imaizumi, T. (2007). FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science, 318(5848), 261-265. doi:10.1126/science.1146994Scarpeci, T. E., Zanor, M. I., Mueller-Roeber, B., & Valle, E. M. (2013). Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Molecular Biology, 83(3), 265-277. doi:10.1007/s11103-013-0090-8Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14(2), 194-199. doi:10.1016/s0958-1669(03)00030-2Shelp, B. J., Mullen, R. T., & Waller, J. C. (2012). Compartmentation of GABA metabolism raises intriguing questions. Trends in Plant Science, 17(2), 57-59. doi:10.1016/j.tplants.2011.12.006Shi, H., & Chan, Z. (2014). The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6 -activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. Journal of Pineal Research, 57(2), 185-191. doi:10.1111/jpi.12155Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227. doi:10.1093/jxb/erl164Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410-417. doi:10.1016/s1369-5266(03)00092-xSkirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21(2), 197-203. doi:10.1016/j.copbio.2010.03.002Snedden, W. A., Arazi, T., Fromm, H., & Shelp, B. J. (1995). Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiology, 108(2), 543-549. doi:10.1104/pp.108.2.543STITT, M., & KRAPP, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 22(6), 583-621. doi:10.1046/j.1365-3040.1999.00386.xStudart-Guimarães, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., & Fernie, A. R. (2007). Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the γ-Aminobutyrate Shunt in Illuminated Tomato Leaves. Plant Physiology, 145(3), 626-639. doi:10.1104/pp.107.103101Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800Suzuki, M., Kao, C.-Y., Cocciolone, S., & McCarty, D. R. (2002). Maize VP1 complements Arabidopsisabi3 and confers a novel ABA/auxin interaction in roots. The Plant Journal, 28(4), 409-418. doi:10.1046/j.1365-313x.2001.01165.xTaji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., … Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29(4), 417-426. doi:10.1046/j.0960-7412.2001.01227.xThomashow, M. F. (2010). Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway: Figure 1. Plant Physiology, 154(2), 571-577. doi:10.1104/pp.110.161794Toufighi, K., Brady, S. M., Austin, R., Ly, E., & Provart, N. J. (2005). The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. The Plant Journal, 43(1), 153-163. doi:10.1111/j.1365-313x.2005.02437.xVogel, J. T., Zarka, D. G., Van Buskirk, H. A., Fowler, S. G., & Thomashow, M. F. (2004). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal, 41(2), 195-211. doi:10.1111/j.1365-313x.2004.02288.xWang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252. doi:10.1016/j.tplants.2004.03.006Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444Yanagisawa, S. (2001). The Transcriptional Activation Domain of the Plant-Specific Dof1 Factor Functions in Plant, Animal, and Yeast Cells. Plant and Cell Physiology, 42(8), 813-822. doi:10.1093/pcp/pce105Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833-7838. doi:10.1073/pnas.0402267101Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. doi:10.1046/j.1365-313x.1999.00363.xYanagisawa, S., & Sheen, J. (1998). Involvement of Maize Dof Zinc Finger Proteins in Tissue-Specific and Light-Regulated Gene Expression. The Plant Cell, 10(1), 75-89. doi:10.1105/tpc.10.1.75Yang, X., Srivastava, R., Howell, S. H., & Bassham, D. C. (2015). Activation of autophagy by unfolded proteins d

    Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions

    Get PDF
    Introduction Cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. Methods In this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. Results In growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. Discussion The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants

    Estrategias de comunicación y educación ambiental para la gestión de riesgos naturales en el piedemonte mendocino

    Get PDF
    En el marco de las dinámicas urbanas contemporáneas presentes en las ciudades de América Latina, los sectores marginales en espacios urbanos asumen un progresivo aislamiento socio espacial y exposición diferencial ante riesgos naturales en relación a otros sectores presentes en el área metropolitana. La presente investigación pretende identificar las características principales asumidas por las dinámicas urbanas presentes en el área de estudio, así como también describir el actual escenario de riesgos geológicos e hidrológicos, con la finalidad de elaborar una propuesta de acción para minimizar los impactos ambientales asociados a la activación de eventos naturales de tipo destructivo a partir de estrategias de mapeo con zonificación y jerarquización de detalle. La Provincia de Mendoza se caracteriza por una gran variedad de geoformas, que determinan la presencia de diversos procesos morfodinámicos. El piedemonte, unidad de enlace entre la región montañosa y la llanura, constituye un espacio de gran fragilidad ambiental, en donde se presentan importantes riesgos naturales, inherentes al sistema pedemontano. La historia de ocupación y uso actual, determina una exposición diferencial ante amenazas naturales en relación a los distintos sectores sociales presentes en el área. Los resultados previstos en esta investigación pretenden dar cuenta de una relación directa entre las dinámicas urbanas contemporáneas y configuración de un escenario caracterizado por la consolidación de fragmentación espacial y exposición diferencial ante riesgos naturales, en donde la intervención de políticas públicas socio-ambientales y dinámica del mercado vinculado al recurso suelo han tenido un protagonismo principal en la construcción de un territorio signado por la desigualdad social y vulnerabilidad ambiental. La implementación de estrategias de comunicación y gestión ambiental se constituyen como herramientas apropiadas para la reducción de posibles impactos negativos derivados de la activación de los procesos naturales destructivos analizados. Se presentan los resultados parciales del proyecto de investigación

    The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The changes in storage reserve accumulation during maize (<it>Zea mays </it>L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The <it>Opaque-2 </it>(<it>O2</it>) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the <it>Opaque-7 </it>(<it>O7</it>) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the <it>o2 </it>and <it>o7 </it>mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants.</p> <p>Results</p> <p>We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the <it>o7 </it>mutant, but severe in the <it>o2 </it>and <it>o2o7 </it>backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes.</p> <p>Conclusion</p> <p>Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.</p

    Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses

    Get PDF
    [EN] DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF15 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF15 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.This work was supported by grants from Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA; project numbers: 2009-0004-C01, 2012-0008-C01), the Spanish Ministry of Science and Innovation (project number: BIO2010-14871), and the MERIT Project (FP7 ITN2010-264474). ARC was supported by a pre-doctoral fellowship from the INIA. The authors would like to thank Mar Gonzalez and Victor Carrasco for technical assistance and Dr Pablo Gonzalez-Melendi for technical handling of the confocal microscope. We also thank Eugenio Grau for technical assistance with RT-PCR analyses.Corrales, A.; González Nebauer, S.; Carrillo, L.; Fernández Nohales, P.; Marques Signes, J.; Renau Morata, B.; Granell, A.... (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany. 65(4):995-1012. https://doi.org/10.1093/jxb/ert451S9951012654AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by theAIM1transcription factor. The Plant Journal, 58(2), 347-360. doi:10.1111/j.1365-313x.2008.03783.xAlonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., … Dröge-Laser, W. (2009). A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. The Plant Cell, 21(6), 1747-1761. doi:10.1105/tpc.108.062968Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389An, H. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 131(15), 3615-3626. doi:10.1242/dev.01231Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., … Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597-W603. doi:10.1093/nar/gks400Atherton, J. G., & Harris, G. P. (1986). Flowering. The Tomato Crop, 167-200. doi:10.1007/978-94-009-3137-4_4Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., … Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server), W202-W208. doi:10.1093/nar/gkp335Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., … Lifschitz, E. (2006). The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal, 46(3), 462-476. doi:10.1111/j.1365-313x.2006.02706.xBEUVE, N., RISPAIL, N., LAINE, P., CLIQUET, J.-B., OURRY, A., & LE DEUNFF, E. (2004). Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant, Cell and Environment, 27(8), 1035-1046. doi:10.1111/j.1365-3040.2004.01208.xBlumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12(4), 431-434. doi:10.1016/s0955-0674(00)00112-5Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., … Mueller, L. A. (2010). The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Research, 39(Database), D1149-D1155. doi:10.1093/nar/gkq866Bressan, R., Bohnert, H., & Zhu, J.-K. (2009). Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement. Molecular Plant, 2(1), 1-2. doi:10.1093/mp/ssn097Calvert, A. (1959). Effect of the Early Environment on the Development of Flowering in Tomato II. Light and Temperature Interactions. Journal of Horticultural Science, 34(3), 154-162. doi:10.1080/00221589.1959.11513954Carmel-Goren, L., Liu, Y. S., Lifschitz, E., & Zamir, D. (2003). TheSELF-PRUNINGgene family in tomato. Plant Molecular Biology, 52(6), 1215-1222. doi:10.1023/b:plan.0000004333.96451.11Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. doi:10.1016/j.plantsci.2004.07.039Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125. doi:10.1016/s0304-4238(98)00191-5Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Diaz, I., Vicente-Carbajosa, J., Abraham, Z., Martinez, M., Isabel-La Moneda, I., & Carbonero, P. (2002). The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. The Plant Journal, 29(4), 453-464. doi:10.1046/j.0960-7412.2001.01230.xDieleman, J. A., & Heuvelink, E. (1992). Factors affecting the number of leaves preceding the first inflorescence in the tomato. Journal of Horticultural Science, 67(1), 1-10. doi:10.1080/00221589.1992.11516214Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry. Analytical Chemistry, 72(15), 3573-3580. doi:10.1021/ac991142iFornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015Gaquerel, E., Heiling, S., Schoettner, M., Zurek, G., & Baldwin, I. T. (2010). Development and Validation of a Liquid Chromatography−Electrospray Ionization−Time-of-Flight Mass Spectrometry Method for Induced Changes inNicotiana attenuataLeaves during Simulated Herbivory. Journal of Agricultural and Food Chemistry, 58(17), 9418-9427. doi:10.1021/jf1017737Gardiner, J., Sherr, I., & Scarpella, E. (2010). Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. The International Journal of Developmental Biology, 54(8-9), 1389-1396. doi:10.1387/ijdb.093006jgGong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., … Ye, Z. (2010). Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany, 61(13), 3563-3575. doi:10.1093/jxb/erq167Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., … Rokhsar, D. S. (2011). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178-D1186. doi:10.1093/nar/gkr944Gualberti, G., Papi, M., Bellucci, L., Ricci, I., Bouchez, D., Camilleri, C., … Vittorioso, P. (2002). Mutations in the Dof Zinc Finger Genes DAG2 and DAG1 Influence with Opposite Effects the Germination of Arabidopsis Seeds. The Plant Cell, 14(6), 1253-1263. doi:10.1105/tpc.010491Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696-704. doi:10.1080/10635150390235520Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331(2), 283-295. doi:10.1016/j.ab.2004.04.037Guo, Y., Qin, G., Gu, H., & Qu, L.-J. (2009). Dof5.6/HCA2, a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in Arabidopsis. The Plant Cell, 21(11), 3518-3534. doi:10.1105/tpc.108.064139Haupt-Herting, S., Klug, K., & Fock, H. P. (2001). A New Approach to Measure Gross CO2 Fluxes in Leaves. Gross CO2 Assimilation, Photorespiration, and Mitochondrial Respiration in the Light in Tomato under Drought Stress. Plant Physiology, 126(1), 388-396. doi:10.1104/pp.126.1.388Hernando-Amado, S., González-Calle, V., Carbonero, P., & Barrero-Sicilia, C. (2012). The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biology, 12(1), 202. doi:10.1186/1471-2229-12-202Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431-438. doi:10.1016/s1360-1385(01)02052-0Hoffman, N. E., Ko, K., Milkowski, D., & Pichersky, E. (1991). Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecular Biology, 17(6), 1189-1201. doi:10.1007/bf00028735Huang, Z., Zhang, Z., Zhang, X., Zhang, H., Huang, D., & Huang, R. (2004). Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters, 573(1-3), 110-116. doi:10.1016/j.febslet.2004.07.064HUSSEY, G. (1963). Growth and Development in the Young Tomato: I. THE EFFECT OF TEMPERATURE AND LIGHT INTENSITY ON GROWTH OF THE SHOOT APEX AND LEAF PRIMORDIA. Journal of Experimental Botany, 14(2), 316-325. doi:10.1093/jxb/14.2.316Imaizumi, T. (2005). FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 309(5732), 293-297. doi:10.1126/science.1110586IWAMOTO, M., HIGO, K., & TAKANO, M. (2009). Circadian clock- and phytochrome-regulated Dof-like gene,Rdd1, is associated with grain size in rice. Plant, Cell & Environment, 32(5), 592-603. doi:10.1111/j.1365-3040.2009.01954.xJang, S., Marchal, V., Panigrahi, K. C. S., Wenkel, S., Soppe, W., Deng, X.-W., … Coupland, G. (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. The EMBO Journal, 27(8), 1277-1288. doi:10.1038/emboj.2008.68Jones, M. L. (2013). Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers. AoB Plants, 5(0), plt023-plt023. doi:10.1093/aobpla/plt023Karimi, M., Depicker, A., & Hilson, P. (2007). Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 145(4), 1144-1154. doi:10.1104/pp.107.106989Kerepesi, I., & Galiba, G. (2000). Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Science, 40(2), 482. doi:10.2135/cropsci2000.402482xKinet, J. M. (1977). Effect of light conditions on the development of the inflorescence in tomato. Scientia Horticulturae, 6(1), 15-26. doi:10.1016/0304-4238(77)90074-7Kirby, J., & Kavanagh, T. A. (2002). NAN fusions: a synthetic sialidase reporter gene as a sensitive and versatile partner for GUS. The Plant Journal, 32(3), 391-400. doi:10.1046/j.1365-313x.2002.01422.xKloosterman, B., Abelenda, J. A., Gomez, M. del M. C., Oortwijn, M., de Boer, J. M., Kowitwanich, K., … Bachem, C. W. B. (2013). Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 495(7440), 246-250. doi:10.1038/nature11912Konishi, M., & Yanagisawa, S. (2007). Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana. Plant Physiology and Biochemistry, 45(8), 623-629. doi:10.1016/j.plaphy.2007.05.001Krohn, N. M., Yanagisawa, S., & Grasser, K. D. (2002). Specificity of the Stimulatory Interaction between Chromosomal HMGB Proteins and the Transcription Factor Dof2 and Its Negative Regulation by Protein Kinase CK2-mediated Phosphorylation. Journal of Biological Chemistry, 277(36), 32438-32444. doi:10.1074/jbc.m203814200Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.xKushwaha, H., Gupta, S., Singh, V. K., Rastogi, S., & Yadav, D. (2010). Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Molecular Biology Reports, 38(8), 5037-5053. doi:10.1007/s11033-010-0650-9Lakhssassi, N., Doblas, V. G., Rosado, A., del Valle, A. E., Posé, D., Jimenez, A. J., … Botella, M. A. (2012). The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE Gene Family Is Required for Osmotic Stress Tolerance and Male Sporogenesis. Plant Physiology, 158(3), 1252-1266. doi:10.1104/pp.111.188920Lee, H. E., Shin, D., Park, S. R., Han, S.-E., Jeong, M.-J., Kwon, T.-R., … Byun, M.-O. (2007). Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochemical and Biophysical Research Communications, 353(4), 863-868. doi:10.1016/j.bbrc.2006.12.095Lijavetzky, D., Carbonero, P., & Vicente-Carbajosa, J. (2003). BMC Evolutionary Biology, 3(1), 17. doi:10.1186/1471-2148-3-17Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Mackay, J. P., & Crossley, M. (1998). Zinc fingers are sticking together. Trends in Biochemical Sciences, 23(1), 1-4. doi:10.1016/s0968-0004(97)01168-7Mena, M., Vicente-Carbajosa, J., Schmidt, R. J., & Carbonero, P. (1998). An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. The Plant Journal, 16(1), 53-62. doi:10.1046/j.1365-313x.1998.00275.xMizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., … Coupland, G. (2005). Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. The Plant Cell, 17(8), 2255-2270. doi:10.1105/tpc.105.033464Moreno-Risueno, M. Á., Martínez, M., Vicente-Carbajosa, J., & Carbonero, P. (2006). The family of DOF transcription factors: from green unicellular algae to vascular plants. Molecular Genetics and Genomics, 277(4), 379-390. doi:10.1007/s00438-006-0186-9Moreno-Risueno, M. Á., Díaz, I., Carrillo, L., Fuentes, R., & Carbonero, P. (2007). The HvDOF19 transcription factor mediates the abscisic acid-dependent repression of hydrolase genes in germinating barley aleurone. The Plant Journal, 51(3), 352-365. doi:10.1111/j.1365-313x.2007.03146.xMurashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xNakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93ORELLANA, S., YAÑEZ, M., ESPINOZA, A., VERDUGO, I., GONZÁLEZ, E., RUIZ-LARA, S., & CASARETTO, J. A. (2010). The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant, Cell & Environment, 33(12), 2191-2208. doi:10.1111/j.1365-3040.2010.02220.xPapi, M., Sabatini, S., Altamura, M. M., Hennig, L., Schäfer, E., Costantino, P., & Vittorioso, P. (2002). Inactivation of the Phloem-Specific Dof Zinc Finger GeneDAG1 Affects Response to Light and Integrity of the Testa of Arabidopsis Seeds. Plant Physiology, 128(2), 411-417. doi:10.1104/pp.010488Pinheiro, C., & Chaves, M. M. (2010). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882. doi:10.1093/jxb/erq340Pnueli, L. (2001). Tomato SP-Interacting Proteins Define a Conserved Signaling System That Regulates Shoot Architecture and Flowering. THE PLANT CELL ONLINE, 13(12), 2687-2702. doi:10.1105/tpc.13.12.2687Rajasekaran, L. R., Aspinall, D., & Paleg, L. G. (2000). Physiological mechanism of tolerance of Lycopersicon spp. exposed to salt stress. Canadian Journal of Plant Science, 80(1), 151-159. doi:10.4141/p99-003Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology, 134(4), 1683-1696. doi:10.1104/pp.103.033431Rueda-López, M., Crespillo, R., Cánovas, F. M., & Ávila, C. (2008). Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. The Plant Journal, 56(1), 73-85. doi:10.1111/j.1365-313x.2008.03573.xSawa, M., Nusinow, D. A., Kay, S. A., & Imaizumi, T. (2007). FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science, 318(5848), 261-265. doi:10.1126/science.1146994Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10(3), 296-302. doi:10.1016/j.pbi.2007.04.014Shannon, M. C., & Grieve, C. M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78(1-4), 5-38. doi:10.1016/s0304-4238(98)00189-7Shaw, L. M., McIntyre, C. L., Gresshoff, P. M., & Xue, G.-P. (2009). Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Functional & Integrative Genomics, 9(4), 485-498. doi:10.1007/s10142-009-0130-2Shelp, B. J., Bown, A. W., & Faure, D. (2006). Extracellular γ-Aminobutyrate Mediates Communication between Plants and Other Organisms. Plant Physiology, 142(4), 1350-1352. doi:10.1104/pp.106.088955Shelp, B. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446-452. doi:10.1016/s1360-1385(99)01486-7Skirycz, A., Jozefczuk, S., Stobiecki, M., Muth, D., Zanor, M. I., Witt, I., & Mueller-Roeber, B. (2007). Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytologist, 175(3), 425-438. doi:10.1111/j.1469-8137.2007.02129.xSkirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., … Witt, I. (2006). DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. The Plant Journal, 47(1), 10-24. doi:10.1111/j.1365-313x.2006.02767.xSuárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138Sun, S.-J., Guo, S.-Q., Yang, X., Bao, Y.-M., Tang, H.-J., Sun, H., … Zhang, H.-S. (2010). Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 61(10), 2807-2818. doi:10.1093/jxb/erq120Takada, S., & Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis Homolog of HETEROCHROMATIN PROTEIN1, Counteracts the Activation of FLOWERING LOCUS T by CONSTANS in the Vascular Tissues of Leaves to Regulate Flowering Time. The Plant Cell, 15(12), 2856-2865. doi:10.1105/tpc.016345Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121Thompson, J. (1997). The CLUSTAL_X windows

    Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds

    Get PDF
    Mannans are hemicellulosic polysaccharides in the plant primary cell wall (CW). Mature seeds, specially their endosperm cells, have CWs rich in mannan-based polymers that confer a strong mechanical resistance for the radicle protrusion upon germination. The rupture of the seed coat and endosperm are two sequential events during the germination of Arabidopsis thaliana. Endo-β-mannanases (MAN; EC. 3.2.1.78) are hydrolytic enzymes that catalyze cleavage of β1 → 4 bonds in the mannan-polymer. In the genome of Arabidopsis, the endo-β-mannanase (MAN) family is represented by eight members. The expression of these eight MAN genes has been systematically explored in different organs of this plant and only four of them (AtMAN7, AtMAN6, AtMAN2 and AtMAN5) are expressed in the germinating seeds. Moreover, in situ hybridization analysis shows that their transcript accumulation is restricted to the micropylar endosperm and to the radicle and this expression disappears soon after radicle emergence. T-DNA insertion mutants in these genes (K.O. MAN7, K.O. MAN6, K.O. MAN5), except that corresponding to AtMAN2 (K.O. MAN2), germinate later than the wild type (Wt). K.O. MAN6 is the most affected in the germination time course with a t 50 almost double than that of the Wt. These data suggest that AtMAN7, AtMAN5 and specially AtMAN6 are important for the germination of A. thaliana seeds by facilitating the hydrolysis of the mannan-rich endosperm cell walls
    corecore