27 research outputs found
The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions
The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05.The QUIJOTE-CMB experiment is being developed by the Instituto de Astrofisica de Canarias (IAC), the
Instituto de Fisica de Cantabria (IFCA), and the Universities of Cantabria, Manchester and Cambridge. Partial
financial support is provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under the
projects AYA2010-21766-C03 (01, 02 and 03), and also by the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation49)
PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine.
OBJECTIVE: Whole genome sequencing and the screening of 103 families recently led us to identify PRRT2 (proline-rich-transmembrane protein) as the gene causing infantile convulsions (IC) with paroxysmal kinesigenic dyskinesia (PKD) (PKD/IC syndrome, formerly ICCA). There is interfamilial and intrafamilial variability and the patients may have IC or PKD. Association of IC with hemiplegic migraine (HM) has also been reported. In order to explore the mutational and clinical spectra, we analyzed 34 additional families with either typical PKD/IC or PKD/IC with migraine.
METHODS: We performed Sanger sequencing of all PRRT2 coding exons and of exon-intron boundaries in the probands and in their relatives whenever appropriate.
RESULTS: Two known and 2 novel PRRT2 mutations were detected in 18 families. The p.R217Pfs*8 recurrent mutation was found in ≈50% of typical PKD/IC, and the unreported p.R145Gfs*31 in one more typical family. PRRT2 mutations were also found in PKD/IC with migraine: p.R217Pfs*8 cosegregated with PKD associated with HM in one family, and was also detected in one IC patient having migraine with aura, in related PKD/IC familial patients having migraine without aura, and in one sporadic migraineur with abnormal MRI. Previously reported p.R240X was found in one patient with PKD with migraine without aura. The novel frameshift p.S248Afs*65 was identified in a PKD/IC family member with IC and migraine with aura.
CONCLUSIONS: We extend the spectrum of PRRT2 mutations and phenotypes to HM and to other types of migraine in the context of PKD/IC, and emphasize the phenotypic pleiotropy seen in patients with PRRT2 mutationsjournal articleresearch support, non-u.s. gov't2012 Nov 202012 10 17importedComment in : Paroxysmal disorders associated with PRRT2 mutations shake up expectations on ion channel genes. [Neurology. 2012
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
Vitamin B12 Deficiency and West Syndrome: An Uncommon but Preventable Cause of Neurological Disorder. Report on Three Cases, One of Them with Late Onset during Vitamin B12 Treatment
Vitamin B12 is a water-soluble vitamin that plays a fundamental role as an essential cofactor for two enzymes responsible for the production of succinyl-CoA and methionine. Vitamin B12 deficiency can occur in infants and may be related to the breastfeeding mother's adherence to a vegan diet or somatic diseases in the mother. It should be differentiated from inborn errors of vitamin B12 metabolism. Herein, we report the cases of three infants with West syndrome; all three were breastfed by mothers who followed a strict vegan diet. In one of the three infants, West syndrome developed during treatment with vitamin B12 and normalization of the vitamin B12 level. Early treatment and replacement therapy are worthwhile to prevent serious neurological problems and to improve the patient's clinical course
GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy
Lemke JR, Hendrickx R, Geider K, et al. GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy. Annals of Neurology. 2014;75(1):147-154.Objective: To identify novel epilepsy genes using a panel approach and describe the functional consequences of mutations. Methods: Using a panel approach, we screened 357 patients comprising a vast spectrum of epileptic disorders for defects in genes known to contribute to epilepsy and/or intellectual disability (ID). After detection of mutations in a novel epilepsy gene, we investigated functional effects in Xenopus laevis oocytes and screened a follow-up cohort. Results: We revealed de novo mutations in GRIN2B encoding the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in 2 individuals with West syndrome and severe developmental delay as well as 1 individual with ID and focal epilepsy. The patient with ID and focal epilepsy had a missense mutation in the extracellular glutamate-binding domain (p.Arg540His), whereas both West syndrome patients carried missense mutations within the NR2B ion channel-forming re-entrant loop (p.Asn615Ile, p.Val618Gly). Subsequent screening of 47 patients with unexplained infantile spasms did not reveal additional de novo mutations, but detected a carrier of a novel inherited GRIN2B splice site variant in close proximity (c.2011-5_2011-4delTC). Mutations p.Asn615Ile and p.Val618Gly cause a significantly reduced Mg2+ block and higher Ca2+ permeability, leading to a dramatically increased Ca2+ influx, whereas p.Arg540His caused less severe disturbance of channel function, corresponding to the milder patient phenotype. Interpretation: We identified GRIN2B gain-of-function mutations as a cause of West syndrome with severe developmental delay as well as of ID with childhood onset focal epilepsy. Severely disturbed channel function corresponded to severe clinical phenotypes, underlining the important role of facilitated NMDA receptor signaling in epileptogenesis
Keeping people with epilepsy safe during the COVID-19 pandemic
OBJECTIVES: To provide information on the effect of the coronavirus disease of 2019 (COVID-19) pandemic on people with epilepsy and provide consensus recommendations on how to provide the best possible care for people with epilepsy while avoiding visits to urgent care facilities and hospitalizations during the novel coronavirus pandemic. METHODS: The authors developed consensus statements in 2 sections. The first was "How should we/clinicians modify our clinical care pathway for people with epilepsy during the COVID-19 pandemic?" The second was "What general advice should we give to people with epilepsy during this crisis? The authors individually scored statements on a scale of -10 (strongly disagree) to +10 (strongly agree). Five of 11 recommendations for physicians and 3/5 recommendations for individuals/families were rated by all the authors as 7 or above (strongly agree) on the first round of rating. Subsequently, a teleconference was held where statements for which there was a lack of strong consensus were revised. RESULTS: After revision, all consensus recommendations received a score of 7 or above. The recommendations focus on administration of as much care as possible at home to keep people with epilepsy out of health care facilities, where they are likely to encounter COVID-19 (including strategies for rescue therapy), as well as minimization of risk of seizure exacerbation through adherence, and through ensuring a regular supply of medication. We also provide helpful links to additional helpful information for people with epilepsy and health providers. CONCLUSION: These recommendations may help health care professionals provide optimal care to people with epilepsy during the coronavirus pandemic.Fil: French, Jacqueline A.. No especifíca;Fil: Brodie, Martin J.. No especifíca;Fil: Caraballo, Roberto Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Devinsky, Orrin. Grossman School of Medicine; Estados UnidosFil: Ding, Ding. Huashan Hospital; ChinaFil: Jehi, Lara. No especifíca;Fil: Jette, Nathalie. No especifíca;Fil: Kanner, Andres. No especifíca;Fil: Modi, Avani C.. No especifíca;Fil: Newton, Charles R.. University of Oxford; Reino UnidoFil: Patel, Archana A.. Harvard Medical School; Estados UnidosFil: Pennell, Page B.. Brigham and Women’s Hospital; Estados UnidosFil: Perucca, Emilio. Universita degli Studi di Pavia; ItaliaFil: Sander, Josemir W.. Queen Square Institute of Neurology; Reino UnidoFil: Scheffer, Ingrid E.. Austin and Royal Children’s Hospitals; AustraliaFil: Singh, Gagandeep. No especifíca;Fil: Williams, Emma. No especifíca;Fil: Wilmshurst, Jo. Red Cross War Memorial Children’s Hospital; SudáfricaFil: Cross, J. Helen. No especifíca