490 research outputs found

    Control of MRSA infection and colonisation in an intensive care unit by GeneOhm MRSA assay and culture methods

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens. Due to the diffusion of MRSA strains in both hospital and community settings, prevention and control strategies are receiving increased attention. Approximately 25% to 30% of the population is colonised with S. aureus and 0.2% to 7% with MRSA. The BD GeneOhm MRSA real-time PCR assay offers quicker identification of MRSA-colonised patients than do culture methods. Ninety-five patients admitted to the Intensive Care Unit of IRCCS Policlinico San Matteo of Pavia (Italy) for a period > 24 h were screened for MRSA colonisation with both the culture method and the GeneOhm assay. Of the 246 nasal swabs collected from 95 patients, 36 samples were found to be positive by both methods (true-positive). 30% of colonised patients had developed the MRSA infection. Our results show that the GeneOhm MRSA assay is a valuable diagnostic tool for detecting MRSA quickly in nasal swabs. This study confirms that colonisation represents a high risk factor for MRSA infection, and that good MRSA surveillance in an Intensive Care Unit is therefore an excellent way to prevent MRSA infectio

    Subfunctionalization reduces the fitness cost of gene duplication in humans by buffering dosage imbalances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Driven essentially by random genetic drift, subfunctionalization has been identified as a possible non-adaptive mechanism for the retention of duplicate genes in small-population species, where widespread deleterious mutations are likely to cause complementary loss of subfunctions across gene copies. Through subfunctionalization, duplicates become indispensable to maintain the functional requirements of the ancestral locus. Yet, gene duplication produces a dosage imbalance in the encoded proteins and thus, as investigated in this paper, subfunctionalization must be subject to the selective forces arising from the fitness bottleneck introduced by the duplication event.</p> <p>Results</p> <p>We show that, while arising from random drift, subfunctionalization must be inescapably subject to selective forces, since the diversification of expression patterns across paralogs mitigates duplication-related dosage imbalances in the concentrations of encoded proteins. Dosage imbalance effects become paramount when proteins rely on obligatory associations to maintain their structural integrity, and are expected to be weaker when protein complexation is ephemeral or adventitious. To establish the buffering effect of subfunctionalization on selection pressure, we determine the packing quality of encoded proteins, an established indicator of dosage sensitivity, and correlate this parameter with the extent of paralog segregation in humans, using species with larger population -and more efficient selection- as controls.</p> <p>Conclusions</p> <p>Recognizing the role of subfunctionalization as a dosage-imbalance buffer in gene duplication events enabled us to reconcile its mechanistic nonadaptive origin with its adaptive role as an enabler of the evolution of genetic redundancy. This constructive role was established in this paper by proving the following assertion: <it>If subfunctionalization is indeed adaptive, its effect on paralog segregation should scale with the dosage sensitivity of the duplicated genes</it>. Thus, subfunctionalization becomes adaptive in response to the selection forces arising from the fitness bottleneck imposed by gene duplication.</p

    Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin

    Get PDF
    VanA-type resistance to glycopeptide antibiotics in clinical enterococci is regulated by the VanSARA two-component signal transduction system. The nature of the molecular ligand that is recognised by the VanSA sensory component has not hitherto been identified. Here we employ purified, intact and active VanSA membrane protein (henceforth referred to as VanS) in analytical ultracentrifugation experiments to study VanS oligomeric state and conformation in the absence and presence of vancomycin. A combination of sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge (SEDFIT, SEDFIT-MSTAR and MULTISIG analysis) showed that VanS in the absence of the ligand is almost entirely monomeric (molar mass M = 45.7 kDa) in dilute aqueous solution with a trace amount of high molar mass material (M ~ 200 kDa). The sedimentation coefficient s suggests the monomer adopts an extended conformation in aqueous solution with an equivalent aspect ratio of ~ (12+2). In the presence of vancomycin over a 33% increase in the sedimentation coefficient is observed with the appearance of additional higher s components, demonstrating an interaction, an observation consistent with our circular dichroism measurements. The two possible causes of this increase in s – either a ligand induced dimerization and/or compaction of the monomer are considered

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals

    Get PDF
    Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. Methods: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. Results: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. Conclusion: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated

    Innovations in mental health services implementation: a report on state-level data from the U.S. Evidence-Based Practices Project

    Get PDF
    BACKGROUND: The Evidence-Based Practice (EBP) Project has been investigating the implementation of evidence-based mental health practices (Assertive Community Treatment, Family Psychoeducation, Integrated Dual Diagnosis Treatment, Illness Management and Recovery, and Supported Employment) in state public mental health systems in the United States since 2001. To date, Project findings have yielded valuable insights into implementation strategy characteristics and effectiveness. This paper reports results of an effort to identify and classify state-level implementation activities and strategies employed across the eight states participating in the Project. METHODS: Content analysis and Greenhalgh et al's (2004) definition of innovation were used to identify and classify state-level activities employed during three phases of EBP implementation: Pre-Implementation, Initial Implementation and Sustainability Planning. Activities were coded from site visit reports created from documents and notes from key informant interviews conducted during two periods, Fall 2002 – Spring 2003, and Spring 2004. Frequency counts and rank-order analyses were used to examine patterns of implementation activities and strategies employed across the three phases of implementation. RESULTS: One hundred and six discreet implementation activities and strategies were identified as innovative and were classified into five categories: 1) state infrastructure building and commitment, 2) stakeholder relationship building and communications, 3) financing, 4) continuous quality management, and 5) service delivery practices and training. Implementation activities from different categories were employed at different phases of implementation. CONCLUSION: Insights into effective strategies for implementing EBPs in mental health and other health sectors require qualitative and quantitative research that seeks to: a) empirically test the effects of tools and methods used to implement EBPs, and b) establish a stronger evidence-base from which to plan, implement and sustain such efforts. This paper offers a classification scheme and list of innovative implementation activities and strategies. The classification scheme offers potential value for future studies that seek to assess the effects of various implementation processes, and helps establish widely accepted standards and criteria that can be used to assess the value of innovative activities and strategies

    Pre-Existing T- and B-Cell Defects in One Progressive Multifocal Leukoencephalopathy Patient

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) usually occurs in patients with severe immunosuppression, hematological malignancies, chronic inflammatory conditions or receiving organ transplant. Recently, PML has also been observed in patients treated with monoclonal antibodies. By taking advantage of the availability of samples from a multiple sclerosis (MS) patient treated with natalizumab, the antibody anti-α4 integrin, who developed PML and was monitored starting before therapy initiation, we investigated the fate of T and B lymphocytes in the onset of PML. Real-time PCR was used to measure new T- and B-cell production by means of T-cell receptor excision circle (TREC) and K-deleting recombination excision circle (KREC) analysis and to quantify transcripts for CD34, terminal-deoxynucleotidyltransferase, and V pre-B lymphocyte gene 1. T- and B-cell subsets and T-cell heterogeneity were measured by flow cytometry and spectratyping. The data were compared to those of untreated and natalizumab-treated MS patients and healthy donors. Before therapy, a patient who developed PML had a low TREC and KREC number; TRECs remained low, while KRECs and pre-B lymphocyte gene 1 transcripts peaked at 6 months of therapy and then decreased at PML diagnosis. Flow cytometry confirmed the deficient number of newly produced T lymphocytes, counterbalanced by an increase in TEMRA cells. The percentage of naive B cells increased by approximately 70% after 6 months of therapy, but B lymphocyte number remained low for the entire treatment period. T-cell heterogeneity and immunoglobulins were reduced

    Ligand-Induced Tyrosine Phosphorylation of Cysteinyl Leukotriene Receptor 1 Triggers Internalization and Signaling in Intestinal Epithelial Cells

    Get PDF
    Leukotriene D(4) (LTD(4)) belongs to the bioactive lipid group known as eicosanoids and has implications in pathological processes such as inflammation and cancer. Leukotriene D(4) exerts its effects mainly through two different G-protein-coupled receptors, CysLT(1) and CysLT(2). The high affinity LTD(4) receptor CysLT(1)R exhibits tumor-promoting properties by triggering cell proliferation, survival, and migration in intestinal epithelial cells. In addition, increased expression and nuclear localization of CysLT(1)R correlates with a poorer prognosis for patients with colon cancer

    We're in this Together: Sensation of the Host Cell Environment by Endosymbiotic Bacteria

    Get PDF
    Bacteria inhabit diverse environments, including the inside of eukaryotic cells. While a bacterial invader may initially act as a parasite or pathogen, a subsequent mutualistic relationship can emerge in which the endosymbiotic bacteria and their host share metabolites. While the environment of the host cell provides improved stability when compared to an extracellular environment, the endosymbiont population must still cope with changing conditions, including variable nutrient concentrations, the host cell cycle, host developmental programs, and host genetic variation. Furthermore, the eukaryotic host can deploy mechanisms actively preventing a bacterial return to a pathogenic state. Many endosymbionts are likely to use two-component systems (TCSs) to sense their surroundings, and expanded genomic studies of endosymbionts should reveal how TCSs may promote bacterial integration with a host cell. We suggest that studying TCS maintenance or loss may be informative about the evolutionary pathway taken toward endosymbiosis, or even toward endosymbiont-to-organelle conversion.Peer reviewe
    • …
    corecore