21 research outputs found

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    A prospective evaluation of early thyroid dysfunction on completion of neck radiotherapy

    No full text
    The purpose of this study was to examine thyroid dysfunction in the early phase of radiotherapy to the head and neck region. Forty-seven patients receiving neck irradiation including the thyroid gland were included. Twenty-eight patients had undergone either a functional or radical neck dissection and in 19 patients radiotherapy was the primary treatment. Compared to the pre-treatment values, there was a significant fall in the TSH level at completion of radiotherapy in the non-operated patients and a non-significant fall in the operated patients. The TSH was also significantly lower in the non-operated group at the end of treatment compared to the operated group. There was a significant fall in the FT3 and significant higher in the FT4 at the end of radiotherapy for both groups. This study shows that even during completion of radiotherapy to the head and neck region changes in thyroid function were observed for both previously operated and non-operated patients. (C) 2003 Elsevier Science Ltd. All rights reserved

    Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells

    No full text
    Recently, there has been a major thrust to understand biological processes at the nanoscale. Optical microscopy has been exceedingly useful in imaging cell microarchitecture. Characterization of cell organization at the nanoscale, however, has been stymied by the lack of practical means of cell analysis at these small scales. To address this need, we developed a microscopic spectroscopy technique, single-cell partial-wave spectroscopy (PWS), which provides insights into the statistical properties of the nanoscale architecture of biological cells beyond what conventional microscopy reveals. Coupled with the mesoscopic light transport theory, PWS quantifies the disorder strength of intracellular architecture. As an illustration of the potential of the technique, in the experiments with cell lines and an animal model of colon carcinogenesis we show that increase in the degree of disorder in cell nanoarchitecture parallels genetic events in the early stages of carcinogenesis in otherwise microscopically/histologically normal-appearing cells. These data indicate that this advance in single-cell optics represented by PWS may have significant biomedical applications
    corecore