10 research outputs found

    Examining the association between exposome score for schizophrenia and functioning in schizophrenia, siblings, and healthy controls: Results from the EUGEI study.

    Get PDF
    Background. A cumulative environmental exposure score for schizophrenia (exposome score for schizophrenia [ES-SCZ]) may provide potential utility for risk stratification and outcome prediction. Here, we investigated whether ES-SCZ was associated with functioning in patients with schizophrenia spectrum disorder, unaffected siblings, and healthy controls. Methods. This cross-sectional sample consisted of 1,261 patients, 1,282 unaffected siblings, and 1,525 healthy controls. The Global Assessment of Functioning (GAF) scale was used to assess functioning. ES-SCZ was calculated based on our previously validated method. The association between ES-SCZ and the GAF dimensions (symptom and disability) was analyzed by applying regression models in each group (patients, siblings, and controls). Additional models included polygenic risk score for schizophrenia (PRS-SCZ) as a covariate. Results. ES-SCZ was associated with the GAF dimensions in patients (symptom: B = 1.53, p-value = 0.001; disability: B = 1.44, p-value = 0.001), siblings (symptom: B = 3.07, p-value < 0.001; disability: B = 2.52, p-value < 0.001), and healthy controls (symptom: B = 1.50, p-value < 0.001; disability: B = 1.31, p-value < 0.001). The results remained the same after adjusting for PRS-SCZ. The degree of associations of ES-SCZ with both symptom and disability dimensions were higher in unaffected siblings than in patients and controls. By analyzing an independent dataset (the Genetic Risk and Outcome of Psychosis study), we replicated the results observed in the patient group. Conclusions. Our findings suggest that ES-SCZ shows promise for enhancing risk prediction and stratification in research practice. From a clinical perspective, ES-SCZ may aid in efforts of clinical characterization, operationalizing transdiagnostic clinical staging models, and personalizing clinical management

    White noise speech illusions: A trait-dependent risk marker for psychotic disorder?

    Get PDF
    Introduction: White noise speech illusions index liability for psychotic disorder in case-control comparisons. In the current study, we examined i) the rate of white noise speech illusions in siblings of patients with psychotic disorder and ii) to what degree this rate would be contingent on exposure to known environmental risk factors (childhood adversity and recent life events) and level of known endophenotypic dimensions of psychotic disorder [psychotic experiences assessed with the Community Assessment of Psychic Experiences (CAPE) scale and cognitive ability]. Methods: The white noise task was used as an experimental paradigm to elicit and measure speech illusions in 1,014 patients with psychotic disorders, 1,157 siblings, and 1,507 healthy participants. We examined associations between speech illusions and increasing familial risk (control -> sibling -> patient), modeled as both a linear and a categorical effect, and associations between speech illusions and level of childhood adversities and life events as well as with CAPE scores and cognitive ability scores. Results: While a positive association was found between white noise speech illusions across hypothesized increasing levels of familial risk (controls -> siblings -> patients) [odds ratio (OR) linear 1.11, 95% confidence interval (CI) 1.02-1.21, p = 0.019], there was no evidence for a categorical association with sibling status (OR 0.93, 95% CI 0.79-1.09, p = 0.360). The association between speech illusions and linear familial risk was greater if scores on the CAPE positive scale were higher (p interaction = 0.003; ORlow CAPE positive scale 0.96, 95% CI 0.85-1.07; ORhigh CAPE positive scale 1.26, 95% CI 1.09-1.46); cognitive ability was lower (p interaction < 0.001; ORhigh cognitive ability 0.94, 95% CI 0.84-1.05; ORlow cognitive ability 1.43, 95% CI 1.23-1.68); and exposure to childhood adversity was higher (p interaction < 0.001; ORlow adversity 0.92, 95% CI 0.82-1.04; ORhigh adversity 1.31, 95% CI 1.13-1.52). A similar, although less marked, pattern was seen for categorical patient-control and sibling-control comparisons. Exposure to recent life events did not modify the association between white noise and familial risk (p interaction = 0.232). Conclusion: The association between white noise speech illusions and familial risk is contingent on additional evidence of endophenotypic expression and of exposure to childhood adversity. Therefore, speech illusions may represent a trait-dependent risk marker

    Examining the independent and joint effects of molecular genetic liability and environmental exposures in schizophrenia: results from the EUGEI study

    No full text
    Schizophrenia is a heritable complex phenotype associated with a background risk involving multiple common genetic variants of small effect and a multitude of environmental exposures. Early twin and family studies using proxy-genetic liability measures suggest gene-environment interaction in the etiology of schizophrenia spectrum disorders, but the molecular evidence is scarce. Here, by analyzing the main and joint associations of polygenic risk score for schizophrenia (PRS-SCZ) and environmental exposures in 1,699 patients with a diagnosis of schizophrenia spectrum disorders and 1,542 unrelated controls with no lifetime history of a diagnosis of those disorders, we provide further evidence for gene-environment interaction in schizophrenia. Evidence was found for additive interaction of molecular genetic risk state for schizophrenia (binary mode of PRS-SCZ above 75% of the control distribution) with the presence of lifetime regular cannabis use and exposure to early-life adversities (sexual abuse, emotional abuse, emotional neglect, and bullying), but not with the presence of hearing impairment, season of birth (winter birth), and exposure to physical abuse or physical neglect in childhood. The sensitivity analyses replacing the a priori PRS-SCZ at 75% with alternative cut-points (50% and 25%) confirmed the additive interaction. Our results suggest that the etiopathogenesis of schizophrenia involves genetic underpinnings that act by making individuals more sensitive to the effects of some environmental exposures.status: publishe

    Efficient Implementation of Application-Aware Spinlock Control in MPSoCs

    Get PDF
    Recent years have seen considerable progress in epidemiological and molecular genetic research into environmental and genetic factors in schizophrenia, but methodological uncertainties remain with regard to validating environmental exposures, and the population risk conferred by individual molecular genetic variants is small. There are now also a limited number of studies that have investigated molecular genetic candidate gene-environment interactions (G × E), however, so far, thorough replication of findings is rare and G × E research still faces several conceptual and methodological challenges. In this article, we aim to review these recent developments and illustrate how integrated, large-scale investigations may overcome contemporary challenges in G × E research, drawing on the example of a large, international, multi-center study into the identification and translational application of G × E in schizophrenia. While such investigations are now well underway, new challenges emerge for G × E research from late-breaking evidence that genetic variation and environmental exposures are, to a significant degree, shared across a range of psychiatric disorders, with potential overlap in phenotyp
    corecore