210 research outputs found

    Neurocognitive signatures of phonemic sequencing in expert backward speakers

    Get PDF
    Despite its prolific growth, neurolinguistic research on phonemic sequencing has largely neglected the study of individuals with highly developed skills in this domain. To bridge this gap, we report multidimensional signatures of two experts in backward speech, that is, the capacity to produce utterances by reversing the order of phonemes while retaining their identity. Our approach included behavioral assessments of backward and forward speech alongside neuroimaging measures of voxel-based morphometry, diffusion tensor imaging, and resting-state functional connectivity. Relative to controls, both backward speakers exhibited behavioral advantages for reversing words and sentences of varying complexity, irrespective of working memory skills. These patterns were accompanied by increased grey matter volume, higher mean diffusivity, and enhanced functional connectivity along dorsal and ventral stream regions mediating phonological and other linguistic operations, with complementary support of areas subserving associative-visual and domain-general processes. Still, the specific loci of these neural patterns differed between both subjects, suggesting individual variability in the correlates of expert backward speech. Taken together, our results offer new vistas on the domain of phonemic sequencing, while illuminating neuroplastic patterns underlying extraordinary language abilities

    Strong fisheries management and governance positively impact ecosystem status

    Get PDF
    Fisheries have had major negative impacts on marine ecosystems, and effective fisheries management and governance are needed to achieve sustainable fisheries, biodiversity conservation goals and thus good ecosystem status. To date, the IndiSeas programme (Indicators for the Seas) has focussed on assessing the ecological impacts of fishing at the ecosystem scale using ecological indicators. Here, we explore fisheries Management Effectiveness' and Governance Quality' and relate this to ecosystem health and status. We developed a dedicated expert survey, focused at the ecosystem level, with a series of questions addressing aspects of management and governance, from an ecosystem-based perspective, using objective and evidence-based criteria. The survey was completed by ecosystem experts (managers and scientists) and results analysed using ranking and multivariate methods. Results were further examined for selected ecosystems, using expert knowledge, to explore the overall findings in greater depth. Higher scores for Management Effectiveness' and Governance Quality' were significantly and positively related to ecosystems with better ecological status. Key factors that point to success in delivering fisheries and conservation objectives were as follows: the use of reference points for management, frequent review of stock assessments, whether Illegal, Unreported and Unregulated (IUU) catches were being accounted for and addressed, and the inclusion of stakeholders. Additionally, we found that the implementation of a long-term management plan, including economic and social dimensions of fisheries in exploited ecosystems, was a key factor in successful, sustainable fisheries management. Our results support the thesis that good ecosystem-based management and governance, sustainable fisheries and healthy ecosystems go together.IOC-UNESCO; EuroMarine; European FP7 MEECE research project; European Network of Excellence Eur-Oceans; FRB EMIBIOS project [212085]info:eu-repo/semantics/publishedVersio

    First bounds on the high-energy emission from isolated Wolf-Rayet binary systems

    Get PDF
    High-energy gamma-ray emission is theoretically expected to arise in tight binary star systems (with high mass loss and high velocity winds), although the evidence of this relationship has proven to be elusive so far. Here we present the first bounds on this putative emission from isolated Wolf-Rayet (WR) star binaries, WR 147 and WR 146, obtained from observations with the MAGIC telescope.Comment: (Authors are the MAGIC Collaboration.) Manuscript in press at The Astrophysical Journal Letter

    Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco

    Get PDF
    The nearby dwarf spheroidal galaxy Draco with its high mass to light ratio is one of the most auspicious targets for indirect dark matter searches. Annihilation of hypothetical DM particles can result in high-energy gamma-rays, e.g. from neutralino annihilation in the supersymmetric framework. With the MAGIC telescope a search for a possible DM signal originating from Draco was performed during 2007. The analysis of the data results in a flux upper limit of 1.1x10^-11 photons cm^-2 sec^-1 for photon energies above 140 GeV, assuming a point like source. Furthermore, a comparison with predictions from supersymmetric models is given. While our results do not constrain the mSUGRA phase parameter space, a very high flux enhancement can be ruled out.Comment: Accepted for publication by Astrophysical Journa

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter

    Discovery of Very High Energy γ\gamma-Rays from Markarian~180 Triggered by an Optical Outburst

    Get PDF
    The high-frequency-peaked BL Lacertae object Markarian~180 (Mrk~180) was observed to have an optical outburst in 2006 March, triggering a Target of Opportunity observation with the MAGIC telescope. The source was observed for 12.4 hr and very high energy γ\gamma-ray emission was detected with a significance of 5.5 σ\sigma. An integral flux above 200 GeV of (2.3±0.7)×1011cm2s1(2.3\pm0.7)\times10^{-11} {cm}^{-2} {s}^{-1} was measured, corresponding to 11% of the Crab Nebula flux. A rather soft spectrum with a photon index of 3.3±0.7-3.3\pm0.7 has been determined. No significant flux variation was found.Comment: Accepted by ApJ Letters, minor revision

    MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6

    Get PDF
    We report on the observation of the region around supernova remnant G65.1+0.6 with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified as GeV pulsars and both have a possible counterpart detected at about 35 TeV by the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and found no significant emission in the range around 1 TeV. We therefore report differential flux upper limits, assuming the emission to be point-like (<0.1 deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the two sources respectively. This implies that the Milagro emission is either extended over a much larger area than our point spread function, or it must be peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in the TeV band.Comment: 8 pages, 3 figures, 1 tabl

    First bounds on the very high energy gamma-ray emission from Arp 220

    Get PDF
    Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15 hours. No significant signal was detected within the dedicated amount of observation time. The first upper limits to the very high energy γ\gamma-ray flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
    corecore