21 research outputs found

    Spatial gradients in action potential duration created by regional magnetofection of hERG are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95178/1/jphysiol.2012.238758.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/95178/2/TJP_5439_sm_SuppMat.pd

    Spatial gradients in action potential duration created by regional magnetofection of hERG are a substrate for wavebreak and turbulent propagation in cardiomyocyte monolayers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95178/1/jphysiol.2012.238758.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/95178/2/TJP_5439_sm_SuppMat.pd

    Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

    Get PDF
    Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24-/- mouse model of HGPS. Challenge of Zmpste24-/- mice with the ß-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24-/- cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24-/- progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death.Peer ReviewedPostprint (published version

    Beneficial Effect of Ursodeoxycholic Acid in Patients with ACOX2 Deficiency-Associated Hypertransaminasemia

    Get PDF
    Background: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly trihydroxycholestanoic acid (THCA). Aims: To investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. Methods & results: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals, and 13 of their relatives, 7 individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by HPLC-MS/MS. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in 2 patients and 3 family members. Two additional non-related patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In ADAH patients, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized transaminases levels. Incubation of HuH-7 liver cells with THCA, which was efficiently taken up, but not through BA transporters, increased ROS production (flow cytometry), ER stress biomarkers (GRP78, CHOP and XBP1-S/XBP1-U ratio), and BAX¿ expression (RT-qPCR and immunoblot), whereas cell viability was decreased (MTT). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. Conclusion: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a non-invasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.This study was supported by the following grants: CIBERehd (EHD15PI05/2016); Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain (PI19/00819 and PI20/00189), co-funded by European Regional Development Fund/European Social Fund, “Investing in your future”; “Junta de Castilla y León” (SA074P20); Fundació Marato TV3 (201916–31); AECC Scientific Foundation (2017/2020), Spain; and “Centro Internacional sobre el Envejecimiento” (OLD-HEPAMARKER, 0348_CIE_6_E), Spain. We also acknowledge support from grants PID2019-111669RBI- 100, PID2020-115055RB- I00 from Plan Nacional de I+D funded by the “Agencia Estatal de Investigación” (AEI) and the center grant P50AA011999 Southern California Research Center for ALPD and Cirrhosis funded by NIAAA/NIH, as well as support from AGAUR of the “Generalitat de Catalunya” SGR-2017- 1112, European Cooperation in Science & Technology (COST) ACTION CA17112 Prospective European Drug-Induced Liver Injury Network. Marta Alonso-Peña was the recipient of a predoctoral fellowship from “Ministerio de Educación, Cultura y Deporte” (BOE-A- 2015- 9456; FPU-14/ 00214) and a Mobility Grant for Short Stays from “Ministerio de Ciencia, Innovación y Universidades” (EST17/00186). Ricardo Espinosa-Escudero is the recipient of a predoctoral fellowship from “Junta de Castilla y León” and “Fondo Social Europeo” (EDU/574/2018). The funding sources were not involved in the research design or preparation of the articl

    Beneficial effect of ursodeoxycholic acid in patients with acyl-CoA oxidase 2 (ACOX2) deficiency-associated hypertransaminasemia

    Get PDF
    Background and aims: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly 3?,7?,12?-trihydroxy-5?-cholestanoic acid (THCA). We aimed to investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration. Methods and results: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals and 13 of their relatives, seven individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by high-performance liquid chromatography-mass spectrometry. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in two patients and three family members. Two additional nonrelated patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In patients with ADAH, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized aminotransferase levels. Incubation of HuH-7 hepatoma cells with THCA, which was efficiently taken up, but not through BA transporters, increased reactive oxygen species production (flow cytometry), endoplasmic reticulum stress biomarkers (GRP78, CHOP, and XBP1-S/XBP1-U ratio), and BAX? expression (reverse transcription followed by quantitative polymerase chain reaction and immunoblot), whereas cell viability was decreased (tetrazolium salt-based cell viability test). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH. Conclusions: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a noninvasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.Funding information: This study was supported by the following grants: CIBERehd (EHD15PI05/2016); Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain (PI19/00819 and PI20/00189), co-funded by European Regional Development Fund/European Social Fund, “Investing in your future”; “Junta de Castilla y León” (SA074P20); Fundació Marato TV3 (201916–31); AECC Scientific Foundation (2017/2020), Spain; and “Centro Internacional sobre el Envejecimiento” (OLD-HEPAMARKER, 0348_CIE_6_E), Spain. We also acknowledge support from grants PID2019-111669RBI-100, PID2020-115055RB-I00 from Plan Nacional de I+D funded by the “Agencia Estatal de Investigación” (AEI) and the center grant P50AA011999 Southern California Research Center for ALPD and Cirrhosis funded by NIAAA/NIH, as well as support from AGAUR of the “Generalitat de Catalunya” SGR-2017-1112, European Cooperation in Science & Technology (COST) ACTION CA17112 Prospective European Drug-Induced Liver Injury Network. Marta Alonso-Peña was the recipient of a predoctoral fellowship from “Ministerio de Educación, Cultura y Deporte” (BOE-A-2015-9456; FPU-14/00214) and a Mobility Grant for Short Stays from “Ministerio de Ciencia, Innovación y Universidades” (EST17/00186). Ricardo Espinosa-Escudero is the recipient of a predoctoral fellowship from “Junta de Castilla y León” and “Fondo Social Europeo” (EDU/574/2018). The funding sources were not involved in the research design or preparation of the article

    HIV coinfection predicts failure of ledipasvir/sofosbuvir in treatment-naïve noncirrhotic patients with HCV genotype

    Full text link
    The efficacy of licensed direct-acting antiviral (DAA) regimens is assumed to be the same for hepatitis C virus (HCV)–monoinfected patients (HCV-Mono) and HIV/HCV-coinfected patients (HCV-Co). However, the high sustained viral response (SVR) rates of DAA regimens and the small number of HIV-infected patients included in registration trials have made it difficult to identify predictors of treatment failure, including the presence of HIV. Methods. We compared treatment outcomes for ledipasvir/sofosbuvir (LDV/SOF) against HCV G1 in treatment-naïve HCV-Mono and HCV-Co without cirrhosis in a prospective registry of individuals receiving DAAs for HCV. Results. Up to September 2017, a total of 17 269 patients were registered, and 1358 patients (1055 HCV-Mono/303 HCV-Co) met the inclusion criteria. Significant differences between HCV-Mono and HCV-Co were observed for age, gender, and G1 subtype distribution. Among HCV-Co, 99.0% were receiving antiretroviral therapy. SVR rates for LDV/SOF at 8 weeks did not differ significantly between HCV-Mono and HCV-Co (96.9% vs 94.0%; P = .199). However, the SVR rate for LDV/SOF at 12 weeks was significantly higher for HCV-Mono than HCV-Co (97.2% vs 91.8%; P = .001). A multivariable logistic regression model including age, sex, liver stiffness, G1 subtype, HCV-RNA, HIV, and treatment duration showed the factors associated with treatment failure to be male sex (adjusted odds ratio [aOR], 2.49; 95% confidence interval [CI], 1.27–4.91; P = .008) and HIV infection (aOR, 2.23; 95% CI, 1.13–4.38; P = .020). Conclusions. The results of this large prospective study analyzing outcomes for LDV/SOF against HCV G1 in treatment-naïve noncirrhotic patients suggest that HIV infection is a predictor of treatment failure in patients with chronic hepatitis C.This work was supported by the Spanish AIDS Research Network (RD16/0025/0017), which is included in the Spanish I+D+I Plan and is co-financed by ISCIII-Subdirección General de Evaluacion and European Funding for Regional Development (FEDER), and the Fondo de Investigación de Sanidad en España (FIS)/Instituto de Salud Carlos III (Spanish Health Research Funds; PI17/00657)

    Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status

    Full text link
    Background: Early prognosis in comatose survivors after cardiac arrest due to ventricular fibrillation (VF) is unreliable, especially in patients undergoing mild hypothermia. We aimed at developing a reliable risk-score to enable early prediction of cerebral performance and survival. Methods: Sixty-one out of 239 consecutive patients undergoing mild hypothermia after cardiac arrest, with eventual return of spontaneous circulation (ROSC), and comatose status on admission fulfilled the inclusion criteria. Background clinical variables, VF time and frequency domain fundamental variables were considered. The primary and secondary outcomes were a favorable neurological performance (FNP) during hospitalization and survival to hospital discharge, respectively. The predictive model was developed in a retrospective cohort (n = 32; September 2006 September 2011, 48.5 ± 10.5 months of follow-up) and further validated in a prospective cohort (n = 29; October 2011 July 2013, 5 ± 1.8 months of follow-up). Results: FNP was present in 16 (50.0%) and 21 patients (72.4%) in the retrospective and prospective cohorts, respectively. Seventeen (53.1%) and 21 patients (72.4%), respectively, survived to hospital discharge. Both outcomes were significantly associated (p < 0.001). Retrospective multivariate analysis provided a prediction model (sensitivity = 0.94, specificity = 1) that included spectral dominant frequency, derived power density and peak ratios between high and low frequency bands, and the number of shocks delivered before ROSC. Validation on the prospective cohort showed sensitivity = 0.88 and specificity = 0.91. A model-derived risk-score properly predicted 93% of FNP. Testing the model on follow-up showed a c-statistic ≥ 0.89. Conclusions: A spectral analysis-based model reliably correlates time-dependent VF spectral changes with acute cerebral injury in comatose survivors undergoing mild hypothermia after cardiac arrest.the CNIC is supported by the Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation.Filgueiras-Rama, D.; Calvo Saiz, CJ.; Salvador-Montañés, Ó.; Cádenas, R.; Ruiz-Cantador, J.; Armada, E.; Rey, JR.... (2015). Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status. International Journal of Cardiology. 186:250-258. doi:10.1016/j.ijcard.2015.03.074S25025818

    Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease caused by defective prelamin A processing, leading to nuclear lamina alterations, severe cardiovascular pathology, and premature death. Prelamin A alterations also occur in physiological aging. It remains unknown how defective prelamin A processing affects the cardiac rhythm. We show age-dependent cardiac repolarization abnormalities in HGPS patients that are also present in the Zmpste24−/− mouse model of HGPS. Challenge of Zmpste24−/− mice with the β-adrenergic agonist isoproterenol did not trigger ventricular arrhythmia but caused bradycardia-related premature ventricular complexes and slow-rate polymorphic ventricular rhythms during recovery. Patch-clamping in Zmpste24−/− cardiomyocytes revealed prolonged calcium-transient duration and reduced sarcoplasmic reticulum calcium loading and release, consistent with the absence of isoproterenol-induced ventricular arrhythmia. Zmpste24−/− progeroid mice also developed severe fibrosis-unrelated bradycardia and PQ interval and QRS complex prolongation. These conduction defects were accompanied by overt mislocalization of the gap junction protein connexin43 (Cx43). Remarkably, Cx43 mislocalization was also evident in autopsied left ventricle tissue from HGPS patients, suggesting intercellular connectivity alterations at late stages of the disease. The similarities between HGPS patients and progeroid mice reported here strongly suggest that defective cardiac repolarization and cardiomyocyte connectivity are important abnormalities in the HGPS pathogenesis that increase the risk of arrhythmia and premature death

    Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function

    Full text link
    Rationale: Autonomic nerves from sinoatrial node (SAN) ganglia are known to regulate SAN function. However, it is unclear whether remote pulmonary vein ganglia (PVG) also modulate SAN pacemaker rhythm. Objective: To investigate whether in the mouse heart PVG modulate SAN function. Methods and Results: In hearts from 45 C57BL and 7 Connexin40+/GFP mice, we used tyrosine-hydroxylase (TH) and choline-acetyltransferase (ChAT) immunofluorescence labeling to characterize adrenergic and cholinergic elements, repectively, within the PVG and SAN. PVG project postganglionic nerves to the SAN. TH and ChAT stained nerves, enter the SAN as an extensive, dense mesh-like neural network. Neurons in PVG are biphenotypic, containing ChAT and TH positive neurons. In Langendorff-perfused hearts, we compared effects of electrical stimulation of PVG, posterior (PRCVG) and anterior right vena cava ganglia (ARCVG) using 200-2000 ms trains of pulses (300μs, 0.2-0.6mA, 200Hz). Sympathetic and/or parasympathetic blockade was achieved using 0.5μM propranolol and 1μM atropine, respectively. Epicardial optical mapping of SAN activation was performed before, during and after ganglion stimulation. PVG stimulation increased the P-P interval by 36±9%; PRCVG stimulation increased the P-P interval by 42±11%. ARCVG stimulation produced no change. Propranolol perfusion increased the PVG stimulation effect to 43±13%. Atropine caused a 5±6% decrease. In optical mapping experiments of whole hearts and isolated atrial preparations, PVG stimulation shifted the origin of SAN discharges to varying locations. Conclusions: PVG contain cholinergic, adrenergic and biphenotipic neurons whose axons project across the right atrium to richly innervate the SAN region and contribute significantly to regulation of SAN function.Zarzoso Muñoz, M.; Rysevaite, K.; Milstein, ML.; Calvo Saiz, CJ.; Kean, AC.; Atienza Fernández, F.; Pauza, DH.... (2013). Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovascular Research. 566-575. doi:10.1093/cvr/cvt081S566575Johnson, T. A., Gray, A. L., Lauenstein, J.-M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96(6), 2265-2272. doi:10.1152/japplphysiol.00620.2003Rysevaite, K., Saburkina, I., Pauziene, N., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm, 8(3), 448-454. doi:10.1016/j.hrthm.2010.11.019Yuan, B.-X., Ardell, J. L., Hopkins, D. A., & Armour, J. A. (1993). Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovascular Research, 27(5), 760-769. doi:10.1093/cvr/27.5.760Rysevaite, K., Saburkina, I., Pauziene, N., Vaitkevicius, R., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm, 8(5), 731-738. doi:10.1016/j.hrthm.2011.01.013Pauza, D. H., Pauziene, N., Pakeltyte, G., & Stropus, R. (2002). Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Annals of Anatomy - Anatomischer Anzeiger, 184(2), 125-136. doi:10.1016/s0940-9602(02)80005-xPauza, D. H., Skripka, V., & Pauziene, N. (2002). Morphology of the Intrinsic Cardiac Nervous System in the Dog: A Whole-Mount Study Employing Histochemical Staining with Acetylcholinesterase. Cells Tissues Organs, 172(4), 297-320. doi:10.1159/000067198Arora, R. C., Waldmann, M., Hopkins, D. A., & Armour, J. A. (2003). Porcine intrinsic cardiac ganglia. The Anatomical Record, 271A(1), 249-258. doi:10.1002/ar.a.10030Gatti, P. J., Johnson, T. A., & John Massari, V. (1996). Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? Journal of the Autonomic Nervous System, 57(1-2), 123-127. doi:10.1016/0165-1838(95)00104-2Zhuang, S., Zhang, Y., Mowrey, K. A., Li, J., Tabata, T., Wallick, D. W., … Mazgalev, T. N. (2002). Ventricular Rate Control by Selective Vagal Stimulation Is Superior to Rhythm Regularization by Atrioventricular Nodal Ablation and Pacing During Atrial Fibrillation. Circulation, 106(14), 1853-1858. doi:10.1161/01.cir.0000031802.58532.04CHEN, J., WASMUND, S. L., & HAMDAN, M. H. (2006). Back to the Future: The Role of the Autonomic Nervous System in Atrial Fibrillation. Pacing and Clinical Electrophysiology, 29(4), 413-421. doi:10.1111/j.1540-8159.2006.00362.xArmour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178LAZZARA, R., SCHERLAG, B. J., ROBINSON, M. J., & SAMET, P. (1973). Selective In Situ Parasympathetic Control of the Canine Sinoatrial and Atrioventricular Nodes. Circulation Research, 32(3), 393-401. doi:10.1161/01.res.32.3.393Gray, A. L., Johnson, T. A., Ardell, J. L., & Massari, V. J. (2004). Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. Journal of Applied Physiology, 96(6), 2273-2278. doi:10.1152/japplphysiol.00616.2003Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., … Alfieri, O. (2004). Pulmonary Vein Denervation Enhances Long-Term Benefit After Circumferential Ablation for Paroxysmal Atrial Fibrillation. Circulation, 109(3), 327-334. doi:10.1161/01.cir.0000112641.16340.c7MIQUEROL, L., MEYSEN, S., MANGONI, M., BOIS, P., VANRIJEN, H., ABRAN, P., … GROS, D. (2004). Architectural and functional asymmetry of the His–Purkinje system of the murine heart. Cardiovascular Research, 63(1), 77-86. doi:10.1016/j.cardiores.2004.03.007Jalife, J., Slenter, V. A., Salata, J. J., & Michaels, D. C. (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circulation Research, 52(6), 642-656. doi:10.1161/01.res.52.6.642Fedorov, V. V., Hucker, W. J., Dobrzynski, H., Rosenshtraukh, L. V., & Efimov, I. R. (2006). Postganglionic nerve stimulation induces temporal inhibition of excitability in rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H612-H623. doi:10.1152/ajpheart.00022.2006Saburkina, I., & Pauza, D. H. (2006). Location and variability of epicardiac ganglia in human fetuses. Anatomy and Embryology, 211(6), 585-594. doi:10.1007/s00429-006-0110-4Slavíková, J., Kuncová, J., Reischig, J., & Dvořáková, M. (2003). Neurochemical Research, 28(3/4), 593-598. doi:10.1023/a:1022837810357Tan, A. Y., Li, H., Wachsmann-Hogiu, S., Chen, L. S., Chen, P.-S., & Fishbein, M. C. (2006). Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction. Journal of the American College of Cardiology, 48(1), 132-143. doi:10.1016/j.jacc.2006.02.054Vaitkevicius, R., Saburkina, I., Rysevaite, K., Vaitkeviciene, I., Pauziene, N., Zaliunas, R., … Pauza, D. H. (2009). Nerve Supply of the Human Pulmonary Veins: An Anatomical Study. Heart Rhythm, 6(2), 221-228. doi:10.1016/j.hrthm.2008.10.027Mabe, A. M., & Hoover, D. B. (2009). Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovascular Research, 82(1), 93-99. doi:10.1093/cvr/cvp029Beau, S. L., Hand, D. E., Schuessler, R. B., Bromberg, B. I., Kwon, B., Boineau, J. P., & Saffitz, J. E. (1995). Relative Densities of Muscarinic Cholinergic and β-Adrenergic Receptors in the Canine Sinoatrial Node and Their Relation to Sites of Pacemaker Activity. Circulation Research, 77(5), 957-963. doi:10.1161/01.res.77.5.957Mangoni, M. E., & Nargeot, J. (2008). Genesis and Regulation of the Heart Automaticity. Physiological Reviews, 88(3), 919-982. doi:10.1152/physrev.00018.2007Brack, K. E., Coote, J. H., & Ng, G. A. (2003). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Experimental Physiology, 89(1), 128-139. doi:10.1113/expphysiol.2003.002654Levy, M. N., & Zieske, H. (1969). Autonomic control of cardiac pacemaker activity and atrioventricular transmission. Journal of Applied Physiology, 27(4), 465-470. doi:10.1152/jappl.1969.27.4.465Hartzell, H. C. (1988). Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Progress in Biophysics and Molecular Biology, 52(3), 165-247. doi:10.1016/0079-6107(88)90014-4LEVY, M. N., YANG, T., & WALLICK, D. W. (1993). Assessment of Beat-by-Beat Control of Heart Rate by the Autonomic Nervous System: Molecular Biology Techniques Are Necessary, But Not Sufficient. Journal of Cardiovascular Electrophysiology, 4(2), 183-193. doi:10.1111/j.1540-8167.1993.tb01222.xLevy, M. N. (1971). Brief Reviews. Circulation Research, 29(5), 437-445. doi:10.1161/01.res.29.5.437Ng, G. A., Brack, K. E., & Coote, J. H. (2001). Effects of Direct Sympathetic and Vagus Nerve Stimulation on the Physiology of the Whole Heart - A Novel Model of Isolated Langendorff Perfused Rabbit Heart with Intact Dual Autonomic Innervation. Experimental Physiology, 86(3), 319-329. doi:10.1113/eph8602146Goldberg, J. (1975). Intra-SA-nodal pacemaker shifts induced by autonomic nerve stimulation in the dog. American Journal of Physiology-Legacy Content, 229(4), 1116-1123. doi:10.1152/ajplegacy.1975.229.4.1116Shibata, N., Inada, S., Mitsui, K., Honjo, H., Yamamoto, M., Niwa, R., … Kodama, I. (2001). Pacemaker Shift in the Rabbit Sinoatrial Node in Response to Vagal Nerve Stimulation. Experimental Physiology, 86(2), 177-184. doi:10.1113/eph8602100Glukhov, A. V., Fedorov, V. V., Anderson, M. E., Mohler, P. J., & Efimov, I. R. (2010). Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H482-H491. doi:10.1152/ajpheart.00756.2009Michaels, D. C., Matyas, E. P., & Jalife, J. (1987). Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circulation Research, 61(5), 704-714. doi:10.1161/01.res.61.5.704Boyett, M. (2000). The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular Research, 47(4), 658-687. doi:10.1016/s0008-6363(00)00135-8Lemery, R., Birnie, D., Tang, A. S. L., Green, M., & Gollob, M. (2006). Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm, 3(4), 387-396. doi:10.1016/j.hrthm.2006.01.009Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., & Katritsis, D. G. (2009). Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm, 6(9), 1257-1264. doi:10.1016/j.hrthm.2009.05.018Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., & Lazzara, R. (2005). Electrical Stimulation to Identify Neural Elements on the Heart: Their Role in Atrial Fibrillation. Journal of Interventional Cardiac Electrophysiology, 13(S1), 37-42. doi:10.1007/s10840-005-2492-2Puodziukynas, A., Kazakevicius, T., Vaitkevicius, R., Rysevaite, K., Jokubauskas, M., Saburkina, I., … Pauza, D. H. (2012). Radiofrequency catheter ablation of pulmonary vein roots results in axonal degeneration of distal epicardial nerves. Autonomic Neuroscience, 167(1-2), 61-65. doi:10.1016/j.autneu.2012.01.001Bauer, A., Deisenhofer, I., Schneider, R., Zrenner, B., Barthel, P., Karch, M., … Schmidt, G. (2006). Effects of circumferential or segmental pulmonary vein ablation for paroxysmal atrial fibrillation on cardiac autonomic function. Heart Rhythm, 3(12), 1428-1435. doi:10.1016/j.hrthm.2006.08.025Armour, J. A. (2010). Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm, 7(7), 994-996. doi:10.1016/j.hrthm.2010.02.01

    Cardiac tamponade during catheter-based ablation of cardiac arrhythmias: experience matters

    Get PDF
    The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). ISCIIIFEDER (European Funding for Regional Development), CB16/11/00486 (CJ Calvo, J Millet), CB16/11/00458 (D Filgueiras-Rama)
    corecore