5,849 research outputs found

    Contribution to the theory of photopic vision: Retinal phenomena

    Get PDF
    Principles of thermodynamics are applied to the study of the ultramicroscopic anatomy of the inner eye. Concepts introduced and discussed include: the retina as a three-dimensional sensor, light signals as coherent beams in relation to the dimensions of retinal pigments, pigment effects topographed by the conjugated antennas effect, visualizing lights, the autotropic function of hemoglobin and some cytochromes, and reversible structural arrangements during photopic adaptation. A paleoecological diagram is presented which traces the evolution of scotopic vision (primitive system) to photopic vision (secondary system) through the emergence of structures sensitive to the intensity, temperature, and wavelengths of the visible range

    Quantitative features of multifractal subtleties in time series

    Full text link
    Based on the Multifractal Detrended Fluctuation Analysis (MFDFA) and on the Wavelet Transform Modulus Maxima (WTMM) methods we investigate the origin of multifractality in the time series. Series fluctuating according to a qGaussian distribution, both uncorrelated and correlated in time, are used. For the uncorrelated series at the border (q=5/3) between the Gaussian and the Levy basins of attraction asymptotically we find a phase-like transition between monofractal and bifractal characteristics. This indicates that these may solely be the specific nonlinear temporal correlations that organize the series into a genuine multifractal hierarchy. For analyzing various features of multifractality due to such correlations, we use the model series generated from the binomial cascade as well as empirical series. Then, within the temporal ranges of well developed power-law correlations we find a fast convergence in all multifractal measures. Besides of its practical significance this fact may reflect another manifestation of a conjectured q-generalized Central Limit Theorem

    The Effects of UV Continuum and Lyman alpha Radiation on the Chemical Equilibrium of T Tauri Disks

    Full text link
    We show in this Letter that the spectral details of the FUV radiation fields have a large impact on the chemistry of protoplanetary disks surrounding T Tauri stars. We show that the strength of a realistic stellar FUV field is significantly lower than typically assumed in chemical calculations and that the radiation field is dominated by strong line emission, most notably Lyman alpha radiation. The effects of the strong Lyman alpha emission on the chemical equilibrium in protoplanetary disks has previously been unrecognized. We discuss the impact of this radiation on molecular observations in the context of a radiative transfer model that includes both direct attenuation and scattering. In particular, Lyman alpha radiation will directly dissociate water vapor and may contribute to the observed enhancements of CN/HCN in disks.Comment: 14 pages, 4 figures, accepted by ApJ Letter

    Evidence for Dynamical Changes in a Transitional Protoplanetary Disk with Mid-infrared Variability

    Full text link
    We present multi-epoch Spitzer Space Telescope observations of the transitional disk LRLL 31 in the 2-3 Myr-old star forming region IC 348. Our measurements show remarkable mid-infrared variability on timescales as short as one week. The infrared continuum emission exhibits systematic wavelength-dependent changes that suggest corresponding dynamical changes in the inner disk structure and variable shadowing of outer disk material. We propose several possible sources for the structural changes, including a variable accretion rate or a stellar or planetary companion embedded in the disk. Our results indicate that variability studies in the infrared can provide important new constraints on protoplanetary disk behavior.Comment: 15 pages, 4 figures, accepted to ApJ Letter

    Influence of different dry milling processes on the properties of an attapulgite clay, contribution of inverse gas chromatography

    Get PDF
    Attention, cette publication comporte un corrigendum.International audienceThe effect of dry milling processes on the surface properties of an attapulgite clay, also called palygorskite, was investigated by carrying out experiments with different types of grinding devices. Ground products were then characterized by size measurement, scanning electron microscopy, X-ray diffraction, adsorption-desorption of N-2 and inverse gas chromatography at infinite dilution (IGC-ID) as well as finite concentration conditions (IGC-PC). These analyses were performed to evaluate the changes in particle size distribution, morphology, crystallinity and surface properties of attapulgite powder, respectively. Among the tested dry grinding devices, grinding in an air jet mill (Alpine 50 AS) and a vibratory ball mill (Pulverisette 0) led to the most significant particle size reduction. SEM photomicrographs showed that a breakage of the fibrous structure took place during dry grinding. Moreover, long grinding in Pulverisette 0 resulted in the complete destruction of fibre morphology followed by agglomeration. XRD analysis showed that whatever the grinding process, the microstructure of the attapulgite was not affected. IGC confirmed that only grinding in Pulverisette 0 affected the surface properties notably. In this case, the most significant decreases were observed in the dispersive component of the surface energy (164 to 116 mJ/m(2)) and in the specific surface area obtained with the octane probe (114.5 m(2)/g to 62.6 m(2)/g) by IGC-ID and IGC-FC, respectively. At the same time, a modification of the distribution functions of the adsorption energies (DFAE), giving information about surface heterogeneity, was noticed

    Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks

    Get PDF
    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS) 5-7.5 micron spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other six of the thirteen stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 microns, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.Comment: 33 pages, 9 figures, to appear in the 20 August, 2014, V791 - 2 issue of the Astrophysical Journa

    Modeling the Halpha line emission around classical T Tauri stars using magnetospheric accretion and disk wind models

    Full text link
    Spectral observations of classical T Tauri stars show a wide range of line profiles, many of which reveal signs of matter inflow and outflow. Halpha is the most commonly observed line profile due to its intensity, and it is highly dependent on the characteristics of the surrounding environment of these stars. Our aim is to analyze how the Halpha line profile is affected by the various parameters of our model which contains both the magnetospheric and disk wind contributions to the Halpha flux. We used a dipolar axisymmetric stellar magnetic field to model the stellar magnetosphere and a modified Blandford & Payne model was used in our disk wind region. A three-level atom with continuum was used to calculate the required Hydrogen level populations. We use the Sobolev approximation and a ray-by-ray method to calculate the integrated line profile. Through an extensive study of the model parameter space, we have investigated the contribution of many of the model parameters on the calculated line profiles. Our results show that the Halpha line is strongly dependent on the densities and temperatures inside the magnetosphere and the disk wind region. The bulk of the flux comes, most of the time, from the magnetospheric component for standard classical T Tauri stars parameters, but the disk wind contribution becomes more important as the mass accretion rate, the temperatures and densities inside the disk wind increase. We have also found that most of the disk wind contribution to the Halpha line is emitted at the innermost region of the disk wind. Models that take into consideration both inflow and outflow of matter are a necessity to fully understand and describe classical T Tauri stars.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysics. Revised version with English correction

    L-MEB: A simple model at L-band for the continental areas - Application to the simulation of a half-degree resolution and global scale data set.

    No full text
    L-band (1-2 GHz) microwave radiometry is the most relevant remote sensing technique to monitor soil moisture over land surfaces at the global scale. A synthetic multi-angular brightness temperature data set over land surfaces was simulated at 1.4 GHz, at a half-degree resolution and at the global scale (Pellarin et al., 2003a). This data set was built in order to develop and validate methods to retrieve soil moisture for near-future 1.4 GHz space missions. Brightness temperatures were computed using a simple model (L-MEB, L-band Microwave Emission of the Biosphere) based on radiative transfer equations. The L-MEB model is the result of an extensive review of the current knowledge of the microwave emission of various land covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) at L-Band considering that the model should be simple enough to be compatible with the simulation of a half-degree resolution and global scale data set. This model was parameterized for simulating L-band observations (in the 1-2 GHz range) but the model equations remain valid in a low frequency range (about 1 to 10 GHz) and thus including the L-, C- and X-bands. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving the L-MEB model: soil temperature at the surface and at depth, surface soil moisture, proportion of frozen surface soil moisture, and snow cover characteristics (depth, density, grain size, liquid water content). The different components of the emission model are described in the following sections. These sections present the general formulation of TB for a composite pixel and the microwave emission modules for soil, vegetation-covered surfaces, open water, snow-covered surfaces and atmospheric effects
    • …
    corecore