187 research outputs found

    Broad-band spectral changes of the microquasars Cygnus X-1 and SWIFT J1753.5-0127

    Get PDF
    We report high-energy results obtained with INTEGRAL and Rossi-XTE on two microquasars: the persistent high-mass system Cygnus X-1 and the transient low-mass binary SWIFT J1753.5-0127. INTEGRAL observed Cygnus X-1 from 2002 to 2004: the spectral (5-1000 keV) properties of the source, seen at least in three distinct spectral states, show disc and corona changes. In 2003 June, a high-energy tail at several hundred keV in excess of the thermal Comptonization model was observed, suggesting the presence of an additional non-thermal component. At that time, we detected an unusual correlation between radio data and high-energy hardness. We also report and compare the results obtained with simultaneous observations of the transient source SWIFT J1753.5-0127 performed with Rossi-XTE, INTEGRAL, VLA, REM and NTT on 2005 August 10-12 near its hard X-ray outburst. Broad-band spectra and fast time-variability properties are derived on this source (probably located in the galactic halo) together with radio, IR and optical data. We build a spectral energy distribution of the source and derive interesting multiwavelength constraints. Significantly detected up to 600 keV in a typical Low/Hard State, the transient does not seem to follow the usual radio/X-ray correlation.Comment: 5 figures, 2 in colo

    Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1

    Get PDF
    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011, available on Science Express Web site (March 24th edition

    Detailed Radio to Soft Gamma-ray Studies of the 2005 Outburst of the New X-ray Transient XTE J1818-245

    Full text link
    XTE J1818-245 is an X-ray nova that experienced an outburst in 2005, first seen by the RXTE satellite. The source was observed simultaneously at various wavelengths up to soft gamma-rays with the INTEGRAL satellite, from 2005 February to September. X-ray novae are extreme systems that often harbor a black hole, and are known to emit throughout the electromagnetic spectrum when in outburst. We analyzed radio, (N)IR, optical, X-ray and soft gamma-ray observations and constructed simultaneous broad-band X-ray spectra. Analyzing both the light curves in various energy ranges and the hardness-intensity diagram enabled us to study the long-term behavior of the source. Spectral parameters were typical of the Soft Intermediate States and the High Soft States of a black hole candidate. The source showed relatively small spectral variations in X-rays with considerable flux variation in radio. Spectral studies showed that the accretion disc cooled down from 0.64 to 0.27 keV in 100 days and that the total flux decreased while the relative flux of the hot medium increased. Radio emission was detected several times, and, interestingly, five days after entering the HSS. Modeling the spectral energy distribution from the radio to the soft gamma-rays reveals that the radio flares arise from several ejection events. XTE J1818-245 is likely a black hole candidate transient source that might be closer than the Galactic Bulge. The results from the data analysis trace the physical changes that took place in the system at a maximum bolometric luminosity of (0.4-0.9)e38 erg/s (assuming a distance between 2.8-4.3 kpc) and they are discussed within the context of disc and jet models.Comment: Accepted for publication in Astronomy and Astrophysics. 11 Figures, 3 Table

    Spectral state dependence of the 0.4-2 MeV polarized emission in Cygnus X-1 seen with INTEGRAL/IBIS, and links with the AMI radio data

    Get PDF
    Polarization of the >~400 keV hard tail of the microquasar Cygnus X-1 has been independently reported by INTEGRAL/IBIS, and INTEGRAL/SPI and interpreted as emission from a compact jet. These conclusions were, however, based on the accumulation of all INTEGRAL data regardless of the spectral state. We utilize additional INTEGRAL exposure accumulated until December 2012, and include the AMI/Ryle (15 GHz) radio data in our study. We separate the observations into hard, soft, and intermediate/transitional states and detect radio emission from a compact jet in hard and intermediate states, but not in the soft. The 10-400 keV INTEGRAL (JEM-X and IBIS) state resolved spectra are well modeled with thermal Comptonization and reflection components. We detect a hard tail in the 0.4-2 MeV range for the hard state only. We extract the state dependent polarigrams of Cyg X-1, which all are compatible to no or undetectable level of polarization except in 400-2000 keV range in the hard state where the polarization fraction is 75±\pm32 % and the polarization angle 40.0 +-14 deg. An upper limit on the 0.4-2 MeV soft state polarization fraction is 70%. Due to the short exposure, we obtain no meaningful constraint for the intermediate state. The likely detection of a >400 keV polarized tail in the hard state, together with the simultaneous presence of a radio jet, reinforce the notion of a compact jet origin of the 400 keV emission.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Spinning-Up: The Case of the Symbiotic X-Ray Binary 3A 1954+319

    Get PDF
    We present a timing and spectral analysis of the variable X-ray source 3A 1954+319, Our analysis is mainly based on an outburst serendipitously observed during INTEGRAL Key Program observations of the Cygnus region in 2008 fall and on the Swift/BAT longterm light curve, Previous observations, though sparse, have identified the source to be one of only nine known symbiotic X-ray binaries, i.e., systems composed of an accreting neutron star orbiting in a highly inhomogeneous medium around an M-giant companion. The spectrum of 3A 1954+319 above 20 keY can be best described by a broken power law model. The extremely long pulse period of approx.5.3 hours is clearly visible in the INTEGRAL/ISGRI light curve and confirmed through an epoch folding period search. Furthermore, the light curve allows us to determine a very strong spin up of -2x10(exp 4)h/h during the outburst. This spin up is confirmed by the pulse period evolution calculated from Swift/BAT data. The Swift/BAT data also show a long spin-down trend prior to the 2008 outburst. which is confirmed in archival INTEGRAL/ISGRI data. We discuss possible accretion models and geometries allowing for the transfer of such large amounts of angular momentum and investigate the harder spectrum of this outburst compared to previously published results

    Echo-Mapping of Swift J1753.5-0127

    Get PDF
    We present two epochs of coordinated X-ray-optical timing observations of the black hole candidate Swift J1753.5-0127 during its 2005 outburst. The first epoch in July occurred at outburst peak. Two consecutive nights of observations using the McDonald Observatory Argos camera with the Rossi X-ray Timing Explorer show a consistent correlation with an immediate response and an extended tail lasting ~5s. The properties of the variability and the correlation are consistent with thermal reprocessing in an accretion disk. The shortness of the lag suggests a short orbital period consistent with that recently claimed. The second epoch in August used the VLT FORS2 HIT mode again in conjunction with RXTE. Again a repeatable correlation is seen between two independent subsets of the data. In this case, though, the cross-correlation function has an unusual structure comprising a dip followed by a double-peak. We suggest that this may be equivalent to the dip plus single peak structure seen by Kanbach et al. (2001) in XTE J1118+480 and attributed there to synchrotron emission; a similar structure was seen during later activity of Swift J1753.5-0127 by Durant et al. (2008).Comment: 7 pages, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    First simultaneous multi-wavelength observations of the black hole candidate IGR J17091-3624: ATCA, INTEGRAL, Swift, and RXTE views of the 2011 outburst

    Full text link
    We present the results of the first four (quasi-)simultaneous radio (ATCA), X-ray (Swift, RXTE), and Gamma-ray (INTEGRAL) observations of the black hole candidate IGR J17091-3624, performed in February and March 2011. The X-ray analysis shows that the source was in the hard state, and then it transited to a soft intermediate state. We study the correlated radio/X-ray behaviour of this source for the first time. The radio counterpart to IGR J17091-3624 was detected during all four observations with the ATCA. In the hard state, the radio spectrum is typical of optically thick synchrotron emission from a self-absorbed compact jet. In the soft intermediate state, the detection of optically thin synchrotron emission is probably due to a discrete ejection event associated with the state transition. The position of IGR J17091-3624 in the radio versus X-ray luminosity diagram (aka fundamental plane) is compatible with that of the other black hole sources for distances greater than 11 kpc. IGR J17091-3624 also appears as a new member of the few sources that show a strong quenching of radio emission after the state transition. Using the estimated luminosity at the spectral transition from the hard state, and for a typical mass of 10 M_sun, we estimate a distance to the source between ~11 and ~17 kpc, compatible with the radio behaviour of the source.Comment: 6 pages, 4 figures, 1 online table, accepted for publication in A&

    Overview of an Extensive Multi-wavelength Study of GX 339-4 during the 2010 Outburst

    Get PDF
    The microquasar GX 339-4 experienced a new outburst in 2010: it was observed simultaneously at various wavelengths from radio up to soft gamma-rays. We focused on observations that are quasi-simultaneous with those made with the INTEGRAL and RXTE satellites: these were collected in 2010 March-April during our INTEGRAL Target of Opportunity program, and during some of the other INTEGRAL observing programs with GX 339-4 in the field-of-view. X-ray transients are extreme systems that often harbour a black hole, and are known to emit throughout the whole electromagnetic spectrum when in outburst. The goals of our program are to understand the evolution of the physical processes close to the black hole and to study the connections between the accretion and ejection. We analysed radio, NIR, optical, UV, X-ray and soft gamma-ray observations. We studied the source evolution in detail by producing light curves, hardness-intensity diagrams and spectra. We fitted the broadband data with phenomenological, then physical, models to study the emission coming from the distinct components. Based on the energy spectra, the source evolved from the canonical hard state to the canonical soft state. The source showed X-ray spectral variations that were correlated with changes in radio, NIR and optical emission. The bolometric flux increased from 0.8 to 2.9*10^{-8} erg cm^{-2} s^{-1} while the relative flux and contribution of the hot medium globally decreased. Reprocessing in the disc was likely to be strong at the end of our observations. The source showed a behaviour similar to that of previous outbursts, with some small deviations in the hard X-rays parameters' evolution. The radio, NIR and optical emission from jets was detected, and seen to fade as the source softened. The results are discussed within the context of disc and jet models.Comment: 13 pages, 10 figures, 4 tables. Accepted by A&
    corecore