99 research outputs found

    Toy Models for Galaxy Formation versus Simulations

    Full text link
    We describe simple useful toy models for key processes of galaxy formation in its most active phase, at z > 1, and test the approximate expressions against the typical behaviour in a suite of high-resolution hydro-cosmological simulations of massive galaxies at z = 4-1. We address in particular the evolution of (a) the total mass inflow rate from the cosmic web into galactic haloes based on the EPS approximation, (b) the penetration of baryonic streams into the inner galaxy, (c) the disc size, (d) the implied steady-state gas content and star-formation rate (SFR) in the galaxy subject to mass conservation and a universal star-formation law, (e) the inflow rate within the disc to a central bulge and black hole as derived using energy conservation and self-regulated Q ~ 1 violent disc instability (VDI), and (f) the implied steady state in the disc and bulge. The toy models provide useful approximations for the behaviour of the simulated galaxies. We find that (a) the inflow rate is proportional to mass and to (1+z)^5/2, (b) the penetration to the inner halo is ~50% at z = 4-2, (c) the disc radius is ~5% of the virial radius, (d) the galaxies reach a steady state with the SFR following the accretion rate into the galaxy, (e) there is an intense gas inflow through the disc, comparable to the SFR, following the predictions of VDI, and (f) the galaxies approach a steady state with the bulge mass comparable to the disc mass, where the draining of gas by SFR, outflows and disc inflows is replenished by fresh accretion. Given the agreement with simulations, these toy models are useful for understanding the complex phenomena in simple terms and for back-of-the-envelope predictions.Comment: Resubmitted to MNRAS after responding to referee's comments; Revised figure

    On the reliability of electrical drives for safety-critical applications

    Get PDF
    The aim of this work is to present some issues related to fault tolerant electric drives,which are able to overcome different types of faults occurring in the sensors, in thepower converter and in the electrical machine, without compromising the overallfunctionality of the system. These features are of utmost importance in safety-criticalapplications. In this paper, the reliability of both commercial and innovative driveconfigurations, which use redundant hardware and suitable control algorithms, will beinvestigated for the most common types of fault: besides standard three phase motordrives, also multiphase topologies, open-end winding solutions, multi-machineconfigurations will be analyzed, applied to various electric motor technologies. Thecomplexity of hardware and control strategies will also be compared in this paper, sincethis has a tremendous impact on the investment costs

    Probing the dynamical state of galaxy clusters

    Full text link
    We show how hydrostatic equilibrium in galaxy clusters can be quantitatively probed combining X-ray, SZ, and gravitational-lensing data. Our previously published method for recovering three-dimensional cluster gas distributions avoids the assumption of hydrostatic equilibrium. Independent reconstructions of cumulative total-mass profiles can then be obtained from the gas distribution, assuming hydrostatic equilibrium, and from gravitational lensing, neglecting it. Hydrostatic equilibrium can then be quantified comparing the two. We describe this procedure in detail and show that it performs well on progressively realistic synthetic data. An application to a cluster merger demonstrates how hydrostatic equilibrium is violated and restored as the merger proceeds.Comment: 10 pages, 6 figures, submitted to A&

    Joint constraints on the Galactic dark matter halo and GC from hypervelocity stars

    Get PDF
    The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here, we show that hypervelocity stars (HVSs) can in principle provide such constraints. We model the observed velocity distribution of HVSs, produced by tidal break-up of stellar binaries caused by Sgr A*. Considering a Galactic Centre (GC) binary population consistent with that inferred in more observationally accessible regions, a fit to current HVS data with significance level >5 per cent can only be obtained if the escape velocity from the GC to 50 kpc is VG ≲ 850 km s^(−1), regardless of the enclosed mass distribution. When a Navarro, Frenk and White matter density profile for the dark matter halo is assumed, haloes with VG ≲ 850 km s^(−1) are in agreement with predictions in the Λ cold dark matter model and a subset of models around M200 ∼ 0.5–1.5 × 10^(12) M_⊙ and rs ≲ 35 kpc can also reproduce Galactic circular velocity data. HVS data alone cannot currently exclude potentials with VG > 850 km s^(−1). Finally, specific constraints on the halo mass from HVS data are highly dependent on the assumed baryonic mass potentials. This first attempt to simultaneously constrain GC and dark halo properties is primarily hampered by the paucity and quality of data. It nevertheless demonstrates the potential of our method, that may be fully realized with the ESA Gaia mission

    Towards a concordant model of halo occupation statistics

    Get PDF
    We use the conditional luminosity function (CLF) and data from the 2-degree Field Galaxy Redshift Survey (2dFGRS) to constrain the average relation between light and mass in a Lambda cold dark matter (ΛCDM) cosmology with Ωm= 0.23 and σ8= 0.74 (hereafter WMAP3 cosmology). Reproducing the observed luminosity dependence of the galaxy two-point correlation function results in average mass-to-light ratios that are ∼35 per cent lower than those in a ΛCDM cosmology with Ωm= 0.3 and σ8= 0.9 (hereafter WMAP1 cosmology). This removes an important problem with previous halo occupation models which had a tendency to predict cluster mass-to-light ratios that were too high. For the WMAP3 cosmology, our model yields average mass-to-light ratios, central galaxy luminosities, halo occupation numbers, satellite fractions and luminosity-gap statistics, that are all in excellent agreement with those obtained from a 2dFGRS group catalogue and from other independent studies. We also use our CLF model to compute the probability distribution P(M | Lcen), that a central galaxy of luminosity Lcen resides in a halo of mass M. We find this distribution to be much broader than what is typically assumed in halo occupation distribution models, which has important implications for the interpretation of satellite kinematics and galaxy-galaxy lensing data. Finally, reproducing the luminosity dependence of the pairwise peculiar velocity dispersions in the 2dFGRS requires relatively low mass-to-light ratios for clusters and a satellite fraction that decreases strongly with increasing luminosity. This is only marginally consistent with the constraints obtained from the luminosity dependence of the galaxy two-point correlation function. We argue that a cosmology with parameters between those of the WMAP1 and WMAP3 cosmologies is likely to yield results with a higher level of consistenc

    Galaxy-galaxy lensing in EAGLE: comparison with data from 180 deg² of the KiDS and GAMA surveys

    Get PDF
    We present predictions for the galaxy–galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 < R/(h− 1 Mpc) < 2, and for five logarithmically equispaced stellar mass bins in the range 10.3 < log10(Mstar/ M⊙) < 11.8. We compare these excess surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Galaxy And Mass Assembly (GAMA) survey. Exploiting the GAMA galaxy group catalogue, the profiles of central and satellite galaxies are computed separately for groups with at least five members to minimize contamination. EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R ≈ 0.5–2 h− 1 Mpc for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the GGL profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection

    Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation

    Full text link
    A long-standing problem of strong lensing by galaxy clusters regards the observed high rate of giant gravitational arcs as compared to the predictions in the framework of the "standard" cosmological model. Recently, few other inconsistencies between theoretical expectations and observations have been claimed which regard the large size of the Einstein rings and the high concentrations of few clusters with strong lensing features. All of these problems consistently indicate that observed galaxy clusters may be gravitational lenses stronger than expected. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for the sample of 12 MACS clusters at z>0.5z>0.5 presented in Ebeling et al. (2007) and discussed in Zitrin et al. (2010). We find that simulated clusters produce 50\sim 50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by 25\sim 25% between simulations and observations. We estimate that, due to cluster triaxiality and orientation biases affecting the lenses with the largest cross sections, the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of 2\sim 2 larger than expected from the Λ\LambdaCDM model. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, due to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&
    corecore