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ABSTRACT
The mass assembly history of the Milky Way can inform both theory of galaxy formation
and the underlying cosmological model. Thus, observational constraints on the properties of
both its baryonic and dark matter contents are sought. Here, we show that hypervelocity stars
(HVSs) can in principle provide such constraints. We model the observed velocity distribution
of HVSs, produced by tidal break-up of stellar binaries caused by Sgr A*. Considering a
Galactic Centre (GC) binary population consistent with that inferred in more observationally
accessible regions, a fit to current HVS data with significance level >5 per cent can only be
obtained if the escape velocity from the GC to 50 kpc is VG � 850 km s−1, regardless of the
enclosed mass distribution. When a Navarro, Frenk and White matter density profile for the
dark matter halo is assumed, haloes with VG � 850 km s−1 are in agreement with predictions
in the � cold dark matter model and a subset of models around M200 ∼ 0.5–1.5 × 1012 M�
and rs � 35 kpc can also reproduce Galactic circular velocity data. HVS data alone cannot
currently exclude potentials with VG > 850 km s−1. Finally, specific constraints on the halo
mass from HVS data are highly dependent on the assumed baryonic mass potentials. This first
attempt to simultaneously constrain GC and dark halo properties is primarily hampered by the
paucity and quality of data. It nevertheless demonstrates the potential of our method, that may
be fully realized with the ESA Gaia mission.

Key words: methods: analytical – stars: kinematics and dynamics – - Galaxy: Centre –
Galaxy: halo – dark matter.

1 IN T RO D U C T I O N

The visible part of galaxies is concentrated in the centre of more
extended and more massive dark matter structures that are termed
haloes. In our Galaxy, the baryonic matter makes up a few per cent
of the total mass and the halo is ∼10 times more extended than
the Galactic disc. In the current paradigm, galaxies assemble in a
hierarchical fashion from smaller structures and the result is due to a
combination of merger history, the underlying cosmological model
and baryonic physics (e.g. cooling and star formation). Thanks
to our vantage point, these fundamental ingredients in galaxy as-
sembly, can be uniquely constrained by observations of the matter
content of the Milky Way and its distribution, when analysed in
synergy with dedicated cosmological simulations.

�E-mail: emr@strw.leidenuniv.nl

Currently, our knowledge of the Galactic dark matter halo is frag-
mented. Beyond ∼10 kpc dynamical tracers such as halo field stars
and stellar streams become rarer and astrometric errors significant.
In particular, there is a large uncertainty in the matter density pro-
file, global shape, orientation coarseness (e.g. Bullock et al. 2010;
Law & Majewski 2010; Vera-Ciro & Helmi 2013; Loebman
et al. 2014; Laevens et al. 2015; Williams & Evans 2015) and
current estimates of the halo mass differ by approximately a factor
of 3 (see fig. 1 in Wang et al. 2015, and references therein). This
difference is significant as a mass measurement in the upper part of
that range together with observations of Milky Way satellites can
challenge (Klypin et al. 1999; Moore et al. 1999; Boylan-Kolchin,
Bullock & Kaplinghat 2011) the current concordance cosmologi-
cal paradigm: the so-called � cold dark matter model (�CDM). In
particular, the ‘too big to fail problem (Boylan-Kolchin et al. 2011)
states that, in �CDM high-mass (�2 × 1012 M�) haloes, the most
massive subhaloes are too dense to correspond to any of the known
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satellites of the Milky Way. Therefore, the solution may simply be
a lighter Galactic halo of <1012 M� (e.g. Vera-Ciro et al. 2013;
Gibbons, Belokurov & Evans 2014). This is an example of how a
robust measurement of the Galactic mass can be instrumental to test
cosmological models.

On the other extreme of Galactic scales, the Galactic Centre (GC)
has been the focus of intense research since the beginning of the
1990s, and it is regarded as a unique laboratory to understand the
interplay between (quiescent) supermassive black holes (SMBHs)
and their environment (see Genzel, Eisenhauer & Gillessen 2010,
for a review). Indeed, the GC harbours the best observationally
constrained SMBH, called Sgr A*, of mass ≈4.0 × 106 M� (Ghez
et al. 2008; Gillessen et al. 2009; Meyer et al. 2012). In particular,
GC observations raise issues on the stellar mass assembly, which is
intimately related to the SMBH growth history. For example, in the
central r ∼ 0.5 pc the light is dominated by young (∼6 Myr old) stars
(e.g. Paumard et al. 2006; Lu et al. 2013) with a suggested top-heavy
initial mass function (IMF, Bartko et al. 2010; Lu et al. 2013) and a
large spread in metallicity at r < 1 pc (Do et al. 2015). The existence
of young stars well within the gravitational sphere of influence of
Sgr A* challenges our knowledge of how stars form, as molecular
clouds should not survive tidal forces there. These stars are part
of a larger scale structure called nuclear star cluster with half-light
radius around ∼5 pc (e.g. Schödel et al. 2014b; Fritz et al. 2016):
in contrast with the inner region, its IMF may be consistent with a
Chabrier/Kroupa IMF and between 2.5 pc <r < 4 pc the majority
of stars appear to be older than 5 Gyr (e.g. Pfuhl et al. 2011; Fritz
et al. 2016). The origin of this nuclear star cluster and its above
mentioned features is highly debated, and the leading models con-
sider coalescence of stellar clusters that reach the GC and are tidally
disrupted or in situ formation from gas streams (see Böker 2010, for
a review on nuclear star cluster). The Hubble Space Telescope imag-
ing surveys have shown that most galaxies contain nuclear clusters
in their photometric and dynamical centres (e.g. Carollo et al. 1997;
Georgiev & Böker 2014; Carson et al. 2015), but the more ob-
servationally accessible and best studied one is the Milky Way’s,
which once more give us a chance of understanding the formation of
galactic nuclei in general. However, to investigate the GC via direct
observations, one must cope with observational challenges such as
the strong and spatially highly variable interstellar extinction and
stellar crowding. A concise review of the current knowledge of the
nuclear star cluster at the GC and the observational obstacles and
limitations is given in Schödel et al. (2014a).

Remarkably, a single class of objects can potentially address
the mass content issue from the GC to the halo: hypervelocity
stars (HVSs). These are detected in the outer halo (but note Zheng
et al. 2014) with radial velocities exceeding the Galactic escape
speed (Brown et al. 2005; see Brown 2015, for a review). So far
around 20 HVSs have been discovered with velocities in the range
∼300–700 km s−1, and trajectories consistent with coming from
the GC. Because of the discovery strategy, they are all B-type stars
mostly in the masses range between 2.5 and 4 M� (e.g. Brown,
Geller & Kenyon 2014). Studying HVSs is thus a complementary
way to investigate the GC stellar population, by surveying more
accessible parts of the sky. After ejection, HVS dynamics is set by
the Galactic gravitational field. Therefore, regardless of their origin,
HVS spatial and velocity distributions can in principle probe the
Galactic total matter distribution (Gnedin et al. 2005, 2010; Sesana,
Haardt & Madau 2007; Yu & Madau 2007; Perets et al. 2009;
Fragione & Loeb 2016).

Retaining hundreds of km s−1 in the halo while originating from
a deep potential well requires initial velocities in excess of several

hundreds of km s−1 Kenyon et al. (2008), which are very rarely
attained by stellar interaction mechanisms put forward to explain
runaway stars (e.g. Blaauw 1961; Aarseth 1974; Eldridge, Langer &
Tout 2011; Perets & Šubr 2012; Tauris 2015; Rimoldi, Portegies
Zwart & Rossi 2016). Velocity and spatial distributions of runaway
and HVSs are indeed expected to be different (Kenyon et al. 2014).
For example, high-velocity runaway stars would almost exclusively
come from the Galactic disc (Bromley et al. 2009). Instead, HVS
energetics and trajectories strongly support the view that HVSs were
ejected in gravitational interactions that tap the gravitational poten-
tial of Sgr A*, and, as a consequence of a huge ‘kick’, escaped into
the halo. In particular, most observations are consistent with the so-
called ‘Hills’ mechanism’, where a stellar binary is tidally disrupted
by Sgr A*. As a consequence, a star can be ejected with a velocity
up to thousands km s−1 (Hills 1988). Another appealing feature
is that the observed B-type stellar population in the inner parsec
– whose in situ origin is quite unlikely – is consistent with being
HVSs’ companions, left bound to Sgr A* by the Hills’ mechanism
(Zhang, Lu & Yu 2013; Madigan et al. 2014).

In a series of three papers, we have built up a solid and efficient
semi-analytical method that fully reproduces three-body simula-
tion results for mass ratios between a binary star and an SMBH
(mt/M ∼ 10−6) expected in the GC. In particular, we reproduce star
trajectories, energies after the encounter and ejection velocity distri-
butions (see Sari, Kobayashi & Rossi 2010; Kobayashi et al. 2012;
Rossi, Kobayashi & Sari 2014, and Section 2 in this paper). Here,
we will capitalize on that work and apply our method to the mod-
elling of current HVS data, with the primary aim of constraining
the Galactic dark matter halo and simultaneously derive conse-
quences for the binary population in the GC. Since star binarity is
observed to be very frequent in the Galaxy (around 50 per cent) and
the GC seems no exception (∼30 per cent for massive binaries Pfuhl
et al. 2014), clues from HVS modelling are a complementary way to
understand the stellar population within the inner few parsecs from
Sgr A*.

This paper is organized as follows. In Section 2, we describe our
method to build HVS ejection velocity distributions, based on our
previous work on the Hills’ mechanism. In Section 3, we present
our first approach to predict velocity distributions in the outer Galac-
tic halo and we show our results when comparing them to data in
Section 3.3. In Section 4, we will specialize to a ‘Navarro, Frenk
and White’ (NFW) dark matter profile and present results in Sec-
tion 4.2. In Section 5, we discuss our findings, their limitations
and implications and then conclude. Finally, in Appendix A, we
describe our analysis of the Galactic circular velocity data, that we
combine with HVS constraints.

2 E J E C T I O N V E L O C I T Y D I S T R I BU T I O N S

We here present our calculation of the ejection velocity distribution
of HVSs (i.e. the velocity distribution at infinity with respect to
the SMBH) via the Hills’ mechanism. We denote with M Sgr A*’s
mass, fixed to M = 4.0 × 106 M�.

Let us consider a stellar binary system with separation a, primary
mass mp, secondary mass ms, mass ratio q = ms/mp ≤ 1, total mass
ms + mp = mt and period P. If this binary is scattered into the
tidal sphere of Sgr A*, the expectation is that its centre of mass is
on a nearly parabolic orbit, as its most likely place of origin is the
neighbourhood of Sgr A*’s radius of influence. Indeed, this latter is
∼5 orders of magnitude larger than the tidal radius, and therefore
the binary’s orbit must be almost radial to hit the tiny Sgr A*’s tidal
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sphere. On this orbit, the binary star has1 ∼90 per cent probability
to undertake an exchange reaction, where a star remains in a binary
with the black hole, while the companion is ejected. In addition,
we proved that the ejection probability is independent of the stellar
mass, when the centre of mass of the binary is on a parabolic orbit.
This is different from the case of elliptical or hyperbolic orbits
where the primary star, carrying most of the orbital energy, has a
greater chance to be respectively captured or ejected (Kobayashi
et al. 2012).

The ejected star has a velocity at infinity, in solely presence of
the black hole potential, equal to

vej =
√

2 Gmc

a

(
M

mt

)1/6

, (1)

(Sari et al. 2010) where mc is the mass of the binary companion star
to the HVS and G is the gravitational constant. Rigorously, there is
a numerical factor in front of the square root in (equation 1) that
depends on the binary black hole encounter geometry. However, this
factor is ∼1, when averaged over the binary’s phase.2 Moreover, the
velocity distributions obtained with the full numerical integration of
a binary’s trajectory and those obtained with (equation 1) are almost
indistinguishable (Rossi et al. 2014). Given these results and the
simplicity of equation (1), it is possible to predict ejection velocity
distributions, efficiently exploring a large range of the parameter
space in Galactic potentials, binary separations and stellar masses.
This latter is the main advantage over methods using three-body (or
N-body) simulations.

Since we are only considering binaries with primaries’ mass
�3 M�, we may consider observations of B-type and O-type binary
stars for guidance. Because of the large distance and the extreme
optical extinction, observations and studies of binaries in the inner
GC are limited to a handful of very massive early-type binary stars
(e.g. Ott, Eckart & Genzel 1999; Pfuhl et al. 2014) and X-ray
binaries (e.g. Muno et al. 2005).

For more reliable statistical inferences, we should turn to obser-
vations of more accessible regions in the Galaxy and in the Large
Magellanic Cloud (LMC). They suggest that a power-law descrip-
tion of these distributions is reasonable. In the Solar neighbourhood,
spectroscopic binaries with primary masses between 1 and 5 M�
have a separation distribution, fa, that for short periods can be both
approximated by a fa ∝ a−1 [Öpik’s law, i.e. f(log10P) ∝ (log10P)η,
with η = 0] and a lognormal distribution in period with 〈P〉 

10 d and a σ logP 
 2.3 (Kouwenhoven et al. 2007; Duchêne &
Kraus 2013). However, in the small separation regime, relevant for
the production of HVSs, the lognormal distribution may also be
described by a power law:3 fa ∝ a0.8. For primary masses >16 M�,
Sana et al. (2012) find a relatively higher frequency of short-period
binaries in Galactic young clusters, η ≈ −0.55, but a combination

1 In Sari et al. (2010), we show that a binary star on a parabolic orbit has
80 per cent chance of disruption, when considering prograde and retrograde
orbits. Our (unpublished) calculations averaged over all orbital inclinations
indicate a high percentage around ∼90 per cent.
2 The binary’s phase is the angle between the stars’ separation and their
centre of mass radial distance from Sgr A*, measured, for instance, at the
tidal radius or at pericentre.
3 This fit value does not significantly depends on the total mass assumed
for binaries. We do not calculate errors on this fitted index, because our
aim is to draw in the γ –α parameter space an indicative range of power-
law exponents for the separation distribution of B-type binaries in the Solar
neighbourhood (see Fig. 2).

of a pick at the smallest periods and a power law may be neces-
sary to encompass all available observations (see e.g. Duchêne &
Kraus 2013). For this range of massive stars (∼20 M�), a similar
power-law distribution η ≈ −0.45 is also consistent with a statisti-
cal description of O-type binaries in the VLT-FLAMES Tarantula
Survey of the star-forming region 30 Doradus of the LMC (Sana
et al. 2013). In the same region, a similar analysis for observed early
(∼10 M�) B-type binaries recovers instead an Öpik’s law (Dunstall
et al. 2015).

Mass ratio distributions, fq, for Galactic binaries are generally ob-
served to be rather flat, regardless of the primary’s mass range (e.g.
Sana et al. 2012; Duchêne & Kraus 2013; Kobulnicky et al. 2014,
see their table 1). Differently, in the 30 Doradus star-forming re-
gion, the mass ratio distributions appear to be steeper, [fq ∝ q∼(−1)

in O-type binaries and fq ∝ q∼(−3) in early B-type ones], suggesting
a preference for pairing with lower mass companions: still a power
law may be fitted to data (Sana et al. 2013; Dunstall et al. 2015).

We therefore assume a binary separation distribution

fa ∝ aα, (2)

where the minimum separation is taken to be the Roche lobe radius
amin = 2.5 × max [R�, Rc], where R� and Rc are the HVS’s and the
companion’s radii, respectively. As a binary mass ratio distribution,
we assume

fq ∝ qγ , (3)

for mmin ≤ ms ≤ mp. If not otherwise stated, mmin = 0.1 M�.
The mass of the primary star (mp � 3 M�) is taken from an IMF,

that needs to mirror the star formation in the GC in the last ∼109 yr.
As mentioned in our introduction, the stellar mass function is rather
uncertain and may be spatially dependent. Observations of stars
with M > 10 M� within about 0.5 pc from Sgr A* indicate a rather
top-heavy mass function with fm ∝ m−1.7

p (Lu et al. 2013). At larger
radii observations of red giants (and the lack of wealth of massive
stars observed closer in) may instead point towards a more canonical
bottom-heavy mass function (e.g. Pfuhl et al. 2011; Fritz et al. 2016).
Given these uncertainties, we explore the consequences of assuming
either a Kroupa mass function (Kroupa 2002), fm ∝ m−2.3

p or top-
heavy distribution, fm ∝ m−1.7

p , in the mass range 2.5 M� ≤ mp ≤
100 M�.

Finally, we do not introduce here any specific model for the
injection of binaries in the black hole tidal sphere and consequently,
we do not explicitly consider any ‘filter’ or modification to the
binary ‘natal’ distributions. Likewise, we do not explicitly account
for higher order multiplicity (e.g. binary with a third companion,
i.e. triples) that may result in disruption of binaries with different
distributions than those cited above. On the other hand, a way to
interpret our results is to consider that the separation and mass ratio
distributions already contain those modifications. We will explore
these possibilities in Section 5.

3 PR E D I C T I N G V E L O C I T Y D I S T R I BU T I O N S
I N THE H ALO: FI RST A PPROACH

In this section, we first describe how we compute the halo velocity
distribution with a method that allows us to use a single parameter
to describe the Galactic deceleration, without specifying its matter
profile (Section 3.1). Given the large Galactocentric distances at
which the current sample of HVSs is observed, our method is shown
to be able to reproduce the correct velocity distribution for the
velocity range of interest, without the need to calculate the HVS
deceleration along the star’s entire path from the GC. These features
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allow us to efficiently explore a large range of the binary population
and the dark matter halo parameter space. Then, in Section 3.2, we
describe how we perform our comparison with current selected data
and finally we present our results in Section 3.3.

3.1 Velocity distribution in the halo: global description of the
potential

Our first approach follows Rossi et al. (2014) and consists in not
assuming any specific model for the Galactic potential, but rather
to globally describe it by the minimum velocity, VG, that an object
must have at the GC in order to reach 50 kpc with a velocity equal
or greater than zero. In other words, the parameter VG is a measure
of the net deceleration suffered by a star ejected at the GC into
the outer halo, regardless of the mass distribution interior to it. The
statement is that Galactic potentials with the same VGproduce the
same velocity distribution beyond 50 kpc, which is where most
HVSs are currently observed.4

The physical argument that supports this statement is the fol-
lowing. For any reasonable distribution of mass that accounts for
the presence of the observed bulge, most of the deceleration occurs
well before stars reach the inner halo (e.g. Kenyon et al. 2008) and
therefore any potential with the same escape velocity VG will have
the same net effect on an initial ejection velocity:

v =
√

v2
ej − V 2

G . (4)

Although practically we are interested in the HVS distribution be-
yond 50 kpc, the method outlined here is valid for any threshold
distance as long as the deceleration beyond that is negligible and,
as justified below, all stars in the velocity range of interest reach
it within their lifetime. Therefore in the following, when a specific
choice is not needed, we will generically call this threshold distance
‘rin’. This, we recall, is also the radius associated with VG.

Let us now proceed to calculate the HVS velocity distribution
within a given radial range �r = [rout − rin] in spherical symme-
try, assuming a time-independent ejection rate R (typically ∼10–
100 Myr−1). Given the above premises, HVSs with a velocity around
v cross rin at a rate dṄ/dv, that can be obtained from the ejection
velocity probability density function (PDF) P(vej) equating bins of
corresponding velocity,

dṄ

dv
dv = RP (vej)dvej,

with the aid of equation (4), that gives v = v(vej). Consequently, the
halo velocity PDF (dn/dv) within a given radial range �r can be
simply computed as

dn(v,�r) ∝ dṄ

dv
× min[�r/v, 〈tlife〉] dv, (5)

where min [�r/v, 〈tlife〉] is the average residence time in that range
of Galactocentric distances of HVSs in a bin dv of velocity around
v. This is the minimum between the crossing time �r/v and the
average lifetime 〈tlife〉 beyond rin of a star in that velocity bin. This
latter term accounts for the possibility that stars may evolve out of
the main sequence and meet their final stellar stages before they
reach the maximum radial distance considered (i.e. rout).

4 There is one discovered at ∼12 kpc (Zheng et al. 2014), but we will not
include in our analysis because it has a different mass and location than our
working sample, and therefore it would need a separate analysis.

More precisely for a given star tlife should be equal to the time
left from its main-sequence lifetime tMS, after it has dwelled for
a time tej in the GC, and subsequently travelled to rin in a flight-
time τ (rin): tlife = tMS − (tej + τ (rin)). Observations suggest that a
HVS can be ejected at anytime during its lifetime with equal prob-
ability and therefore on average tej ≈ tMS/2 (Brown et al. 2014).
In addition, if τ (rin) � tMS, we can write 〈tlife〉 = 〈tMS〉/2, where
〈tMS〉 = ∫

(dn/dm) tMS(m)dm is the average main-sequence life-
time weighted for the star mass distribution dn/dm in a given
velocity bin.

In the HVS mass and metallicity range considered here tMS(m)
≈ 200–700 Myr (and 〈tMS〉 ≈ 300–600 Myr). Consequently our
calculations typically show τ (rin) < tMS for velocities >150 km s−1,
when adopting rin = 50 kpc. This means that τ (rin) � tMS in the
whole velocity range of interest in this work (v ≥ 275 km s−1, see
Section 3.2).

In this framework, we construct a Monte Carlo code where 107

binaries are drawn from the distributions described in Section 2
to build an ejection velocity PDF. This is used to construct the
expected PDF in the outer halo (equation 5) between rin = 50 kpc
and rout = 120 kpc (the observed radial range), using the formalism
detailed above. For each bin of velocity, we calculate the 〈tMS〉,
using the analytical formula by Hurley, Pols & Tout (2000, see their
equation 5). The lifetime for a star in the 2.3–4 M� range is of a
few to several hundred million years, but the exact value depends
on metallicity (higher metallicities correspond to longer lifetimes).
Until recently, solar metallicity was thought to be the typical value
for the GC stellar population. However, more recent works suggest
that there is a wider spread in metallicity, with a hint for a supersolar
mean value (Do et al. 2015). In the following, our fiducial model
will assume:

(i) HVSs masses between 2.5 and 4 solar masses.
(ii) A Kroupa (fm ∝ m−2.3

p ) IMF for primary stars between 2.5
and 100 solar masses.

(iii) For a given primary mass mp, a mass ratio distribution fq ∝ qγ

in the range [mmin/mp, 1], with mmin = 0.1 M� and −10 ≤ γ ≤ 10.
(iv) A separation distribution fa ∝ aα between amin =

2.5 × max [R�, Rc] and amax = 103R�, with −10 ≤ α ≤ 10.
(v) A HVS mean metallicity value of Z = 0.05 (i.e. super-solar).

We will explore different assumptions in Section 5. In particular, we
will investigate a top-heavy primary IMF, explore the consequence
of a solar metallicity and finally assume a higher value of mmin, over
which we have no observational constraints in the GC. We will find
that only the latter, if physically possible, may significantly impact
our results and will discuss the consequences.

Examples of velocity distributions in the halo for our fiducial
model are shown in Fig. 1. Our selected data (see the figure’s cap-
tion and next section) are overplotted with an arbitrary binning
(histogram). It is here worth reminding some of the features de-
rived in Rossi et al. (2014). There, we analytically and numerically
showed that the HVS halo velocity distribution encodes different
physical information in different parts of the distribution. In partic-
ular, the peak of the distribution depends on both VG and the binary
distributions, and moves towards lower velocity for lower VG(right-
hand panel) and higher values of |γ | and α (left-hand and central
panels). On the other hand, the high-velocity branch only depends
on the binary properties, as the Galactic deceleration is negligible at
those velocities. From equation (5), one can derive that for v  vG
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Figure 1. Probability density functions for HVS velocities in the outer halo of our Galaxy, between 50 and 120 kpc. They are calculated following the
deceleration procedure explained in Section 3 and depend on three main parameters: γ , α (for the binary mass ratio and semimajor axis distributions) and VG.
In each panel, two parameters are kept fixed while we show how the distribution changes by changing the value of the third parameter. See text for a detailed
description. For a visual comparison, we overplot data from Brown et al. (2014) (‘unbound sample’ only), with an arbitrary binning.

the high-velocity branch is independent of the binary semimajor
axis distribution (i.e. α) for γ > −(α + 2) and

dn ∝ v2γ dv.

Therefore larger value of |γ | result in a steeper distribution at high
velocities. This is shown in the left-hand panel of Fig. 1. Instead in
the v  vG and γ < −(α + 2) regime,

dn ∝ v−2(α+2)dv,

independently of the assumed mass ratio distribution and a steeper
power law is obtained for larger α values (central panel). A dis-
cussion on the low-velocity tail, that it is solely shaped by the
deceleration, is postponed to Section 4.1.

3.2 Comparison with data

Besides the current HVS sample of so-called ‘unbound’ HVSs (ve-
locity in the standard rest frame �275 km s−1), there is an equal
number of lower velocity ‘bound’ HVSs.5 Currently, it is unclear if
they all share the same origin as the unbound sample, as a large con-
tamination from halo stars cannot be excluded. We will therefore
restrict our statistical comparison with data to the unbound sample
(see upper part of table 1 in Brown et al. 2014). As mentioned ear-
lier, we only select HVS with masses between 2.5 and 4 M�, with
Galactocentric distances between 50 and 120 kpc, for a total of 21
stars. These selections in velocity, mass and distance will be also
applied to our predicted distributions.

Specifically, we calculate the total PDF as described by equa-
tion (5) and we perform a one-dimensional Kolmogorov–Smirnov
(K–S) test applied to a left-truncated data sample.6 If we call

5 Here, we simply follow the nomenclature given in Brown et al. (2014) of
the two samples, even if, in fact, a knowledge of the potential is required to
determine whether a star is bound and this is what we are after.
6 See for example: Chernobai, Rachev & Fabozzi (2005). Composite
goodness-of-fit tests for left-truncated loss samples. Technical Report, Uni-
versity of California, Santa Barbara.

n(<v, �r) the cumulative probability function (CPF) for HVS ve-
locities in the distance range �r, then the actual CPF that should
be compared with data is,

n∗(<v, �r) = n(<v, �r) − n(<275 km s−1,�r)

1 − n(<275 km s−1, �r)
. (6)

Therefore, the K–S test result is computed as

D ≡ max[|n∗(<v, �r) − nd(<v)|], (7)

where nd(<v) is the CPF of the actual data. The significance level
ᾱ = 1 − P (D ≤ d̄) is the probability of rejecting a fitted distribu-
tion n(<v, �r), when in fact it is a good fit. The most commonly used
threshold levels for an acceptable fit are ᾱ = 0.01 and ᾱ = 0.05.
For 21 data points d̄ = 0.344 and d̄ = 0.287 are the critical values
below which the null hypothesis that the data are drawn from the
model cannot be rejected at a significance level of 1 and 5 per cent
respectively.

Note that no HVS is observed with a velocity in excess of
v > 700 km s−1. Since the HVS discovery method is spectroscopic
as opposed to astrometric, there is no obvious observational bias that
would have prevented us from observing HVS with v > 700 km s−1

within 120 kpc and so we do not perform any high-velocity cut
to our model.7 Indeed, the absence of high-velocity HVSs in the
current (small) sample suggests that they are rare, and this fact puts
strong constraints on the model parameters. From the discussion in
the previous section, a suppression of the high-velocity branch can
be achieved by either choose a lower VGor choose steeper binary
distributions (a larger |γ | or α), as we will explicitly show in the
next section.

7 We remark in addition that our equation (5) takes already into account
that faster stars have a shorter residence time by suppressing their number
proportionally to v−1.
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Figure 2. Contour plots for K–S test results in the parameter space α–γ for four different values of VG (see panels’ label). The white dashed line indicates the
5 per cent significance level contours. The white regions correspond to observed properties of B-type or O-type binaries: the region enclosed by a dash–dotted
line is for late B-type stars (2–5 M�) in the Solar neighbourhood (Kouwenhoven et al. 2007; Duchêne & Kraus 2013); results for Galactic O-type binaries are
shown within the region marked by a dotted line (Sana et al. 2012); the region enclosed by a solid (dashed) line is for early ∼10 M� B-type (O-type) binaries
observed in 30 Doradus (Sana et al. 2013; Dunstall et al. 2015). The four stars mark the points (α, γ ) in the parameter space for which the PDF is shown in
Fig. 1 (see also Fig. 6).

3.3 Results

In each panel of Fig. 2, we explore the parameter space α–γ for a
fixed global deceleration that brakes stars while travelling to 50 kpc,
i.e. for a given VG. The contour plots show our K–S test results and
models below and at the right of the white dashed line have a
significance level higher than 5 per cent: i.e. around and below that
line current data are consistent with coming from models with those
sets of parameters.

Let us first focus on the upper right panel (VG ≈ 700 km s−1), as
it shows clearly a common feature of all our contour plots in this
parameter space. There is a stripe of minima that, from left to right,
first runs parallel to the α-axis and then to the γ -axis.8 This stripe is
the locus of points where the high-velocity tail of the distributions
has a similar slope: this happens for values of γ and α related by
γ ≈ −(α + 2) (see discussion of Fig. 1 in Section 3.1). For negative
α values (distributions with more tight binaries than wide ones),
the high-velocity distribution branch is mainly shaped by the mass
ratio distribution and, for example in this panel, a value around
γ ≈ −4 gives the best fit. On the other hand, for positive α (i.e.
more wider binaries than tight ones), the high-velocity tail is shaped
by the separation distribution and a value of around α ≈ 2 gives the
best K–S results.

When increasing the escape velocity (from top left to bottom
right) the stripe of minima moves towards the right lower part
of the plots and gets further and further from the regions in the
α–γ parameter space that correspond to observations of B-type

8 We note that, even if not completely apparent in all our panels, the K–S
test values start to increase again moving towards high values of |γ | and α:
i.e. the stripe of minima has a finite size.

binaries, and actually, to our knowledge, of any type of binaries
currently observed with enough statistics in both star-forming and
quiescent regions. We focus on observations of B-type binaries
because, although our calculation consider ∼3 M� HVSs ejected
from binaries with all possible mass combinations, we find that
the overall velocity distribution is highly dominated by binaries
where HVSs were the primary (more massive) stars, i.e. late B-type
binaries.9

In all panels, but the bottom right one, the white dashed line
crosses or grazes the α–γ parameter space indicated by a white
rectangle within a solid black line. We conclude that within an
approximate range VG � 850 km s−1, the current observed HVS
velocity distribution can be explained assuming a binary statistical
description in the GC that is consistent with the one inferred by
Dunstall et al. (2015) for ∼10 M� B-type binaries in the star-
forming region of the Tarantula Nebula. In addition, for VG �
630 km s−1 the 5 per cent confidence line also crosses the param-
eter space observed for Galactic B-type binaries (Kouwenhoven
et al. 2007). An argument in favour of a similarity between known
star-forming regions and the inner GC is that, in this latter, Pfuhl
et al. (2014) infer a binary fraction close to that in known young
clusters of comparable age. However, we warn the reader that the
Tarantula Nebula’s results are affected by uncertainties beyond those
represented by the nominal errors on α and γ reported by Dunstall
et al. (2015) and we will discuss those in Section 5.

9 Binaries where the HVS companions are the primary stars just contribute
at a percentage level and only to the highest velocity part of the velocity
distribution (see equation 1) in the whole parameter space explored in this
work.
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Finally, we comment on our choice to define the VG limit using a
5 per cent significance level threshold. If we relax this assumption
and accept models with significance level >1 per cent (another com-
monly used threshold) the VG limit moves up to VG ≈ 930 km s−1.
On the other hand, models with >10 per cent significance level have
VG � 800 km s−1. Therefore, as a representative value, we cite here
and thereafter the intermediate one of 850 km s−1, corresponding to
the 5 per cent threshold.

4 SECOND A PPROACH: A SSUMING A
G A L AC T I C P OT E N T I A L M O D E L

We now choose a specific model to describe the Galactic potential,
in order to cast our results in terms of dark matter mass and its
spatial distribution.

We represent the dark matter halo of our Galaxy with a NFW
profile,

φ(r)NFW = −GMh

(
ln(1 + r/rs)

r

)
, (8)

(Navarro, Frenk & White 1996). In this spherical representation,
there are only two parameters: the halo mass Mh and the scale radius
rs, where the radial dependence changes. Equation (8) assumes an
infinite potential (no outer radius truncation) that is justified in our
case since we consider Galactocentric distances smaller than the
halo virial radius (∼200 kpc).

The baryonic mass components of the Galactic potential can be
described by a Hernquist’s spheroid for the bulge (Hernquist 1990),

φ(r)b = − GMb

r + rb
, (9)

(in spherical coordinates) plus a Miyamoto–Nagai disc (Miyamoto
& Nagai 1975, in cylindrical coordinates, where r2 = R2 + z2),

φd(R, z) = − GMd√
R2 +

(
a + √

z2 + b2
)2

, (10)

with the following parameters: Mb = 3.4 × 1010 M�, rb = 0.7 kpc,
Md = 1.0 × 1011 M�, a = 6.5 kpc and b = 0.26 kpc. This Galactic
model has been used in modelling both HVSs and stellar streams
(e.g. Johnston, Spergel & Hernquist 1995; Price-Whelan et al. 2014;
Hawkins et al. 2015, and with slightly different parameters by
Kenyon et al. 2008). Observationally, our choice for the bulge’s
mass profile is supported by the fact that its density profile is very
similar to that obtained by Kafle et al. (2014), fitting kinematic data
of halo stars in SEGUE.10 In addition, Kafle et al. (2014) use our
same model for the disc mass distribution and their best-fitting pa-
rameters are very similar to our parameters (see their tables 1 and 2).
However, different choices may also be consistent with current data,
and we will discuss the impact of different baryonic potentials on
our results in Section 4.2.

In a potential constituted by the sum of all Galactic components,

φT(r,Mh, rs) = φ(r(R, z))d + φ(r)b + φ(r)NFW , (11)

we integrate each star’s trajectory from an inner radius rstart = 3 pc,
equal to Sgr A*’s sphere of influence but any starting radius

10 The Kafle et al. (2014) model for the bulge is not spherical (see their
table 1), therefore we compare to our model both their spherically averaged
density profile and their density profile at 45◦ latitude (see Section 4 for a
justification of this latter).

Figure 3. Galactic halo velocity distributions between 50 and 120 kpc for
a fixed binary statistical description (see parameters in the upper left corner)
but with different treatments of the star deceleration: the red dashed line is
computed as described in Section 3.1 for VG = 760 km s−1 while the black
solid line is our model where stars are continuously decelerated in a potential
whose halo is described by a NFW profile with mass Mh = 0.5 × 1012 M�
and scale radius rs = 31 kpc (see Section 4). This potential requires an
initial velocity to escape from the GC to 50 kpc of VG ≈ 760 km s−1 (see
equation 12). Unlike Fig. 1, both model distributions and data are normalized
at the peak for an easier visual comparison. The vertical dashed line marks
the selection threshold (v = 275 km s−1) of the Brown et al. unbound sample.
This comparison shows that for v � 250 km s−1 the two distributions are
similar, as confirmed by the results from the K–S test (D = 0.25 for the
black solid line and D = 0.26 for the red dashed line).

rstart < 20 pc gives very similar results. In fact, we find that the
disc’s sky-averaged deceleration is overall negligible with respect
to that due to the bulge. To save computational time, we therefore
set R = z = r/

√
2 in equation (10) (i.e. we only consider trajecto-

ries with a Galactic latitude of 45◦), simplifying our calculations to
one-dimensional (the Galactocentric distance r) solutions.

The star’s initial velocity is drawn from the ejection velocity dis-
tribution, constructed as detailed in Section 2. Assumptions on HVS
properties are those of our fiducial model. Informed by observations
(Brown et al. 2014), we assigned a flight-time from a flat distribu-
tion between [0, tMS]. Each integration of 107 star orbits gives a sky
realization of the velocity PDF, but we actually find that the number
of stars we are tracking is sufficiently high that differences between
PDFs associated with different realizations are negligible.

An example of a halo velocity distribution is shown in Fig. 3 with
a black solid line. This accurate calculation of the star deceleration
is well approximated by using equation (4) for v � 250 km s−1,
when the escape velocity at 50 kpc is calculated as

V 2
G = 2(φT (50 kpc, Mh, rs) − φT(rstart, Mh, rs)) , (12)

(red dashed line in Fig. 3). Despite the discrepancy in the behaviour
of the low-velocity tail, the two approaches give very similar K–S
test results when compared to current observations (D = 0.26 for the
NFW model versus D = 0.25 for the ‘VG’ model). With a random
sampling, we tested that K–S results differ at most at percentage
level in the whole extent of the parameter space of interest to us,
validating our first approach, as an efficient and reliable exploratory
method.
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4.1 The low-velocity tail

We here pause to discuss and explain the difference in the velocity
distribution around and below the peak calculated with our two
approaches (see Fig. 3). Without loss of indispensable information,
the impatient reader may skip this section and proceed to the next
one, where we discuss our results.

The low-velocity tail discrepancy is due to our two main assump-
tions of our first method: (i) neglecting the residual deceleration
beyond 50 kpc and (ii) all stars reach 50 kpc before they evolve
out of the main sequence. The residual deceleration gives an excess
of low-velocity stars in the correct distribution (black solid line)
that cannot be reproduced by our approximated calculation (red
dashed line). On the other hand, a fraction of stars that should have
ended up with velocities �150 km s−1 beyond 50 kpc have in fact
flight-times longer than their lifetime and the low-velocity excess
is slightly suppressed in that range.

Let us be more quantitative. In the framework of our first ap-
proach, one can show that the PDF at low velocity increases linearly
with v (Rossi et al. 2014). The calculation is as follows. The rate of

HVSs crossing r = rin with v =
√

v2
ej − V 2

G � VG is given by

dṄ

dv
∼ R P (vej)

∣∣
vej=VG

v

VG
.

Moreover, for11

v < �r/ 〈tMS〉 ≈ 230 km s−1(�r/70 kpc)(300/Myr/ 〈tMS〉),
the residence time within �r is equal to (half of) the stars’ lifetime,
therefore from equation (5) we conclude that

dn(v,�r)

dv
∝ P (vej)

∣∣
vej=VG

v × 〈tMS〉 ,

recovering the linear dependence on v. In fact, 〈tMS〉 is not com-
pletely independent of v as it varies by a factor of ≈1.5 as v →
0. Therefore dn/dv is slightly sub-linear in v. The dependence of
〈tMS〉 on v comes about because vej is proportional to mc. This causes
low-velocity HVSs to be increasingly of lower masses (→2.5 M�),
being ejected from binaries where their companions were all lighter
mc � 2.5 M� than the companions of more massive HVSs.

When considering instead the full deceleration of stars in a grav-
itational potential a = −dφT(r)/dr as they travel towards rout, their
velocity depends both on vej and r,

v(vej, r) =
√

v2
ej − (

Vesc(0)2 − Vesc(r)2
)
, (13)

where Vesc(r) is the escape velocity from a position r to infin-
ity [i.e. Vesc(0) is the escape velocity from the GC to infinity].
Note that VG =

√
Vesc(0)2 − Vesc(rin)2. In the example shown in

Fig. 3, Vesc(0) ≈ 826 km s−1, Vesc(rin = 50 kpc) ≈ 323 km s−1,
Vesc(rout = 120 kpc) ≈ 257 km s−1 and VG ≈ 760 km s−1. On the
other hand, the distance r is a function of both vej and the flight-time
τ (r) = ∫

dv(r)/|a(r)|, and this latter is a preferable independent vari-
able because uniformly distributed. Therefore, we express v = v(vej,
τ ) and

dn

dv
∝

∫ 〈tMS〉

0

∫ vej,max

vej,min

δ(v − v(vej, τ ))P (vej)dvejdτ, (14)

where the relevant ejection velocity range is that gives low-velocity

stars between rin and rout: vej,min =
√

v2 + (
Vesc(0)2 − Vesc(rin)2

)

11 We remind the reader that �r = rout − rin.

and vej,max =
√

v2 + (
Vesc(0)2 − Vesc(rout)2

)
. Note that, for Galac-

tic mass distribution where Vesc(0) > Vesc(rin), Vesc(rout), the range
[vej,min − vej,max] is rather narrow and for v � VG these limits may
be taken as independent of v. This is the case in the example of
Fig. 3, where vej,min ≈ VG ≈ 760 < vej [km s−1] < vej,max ≈ 785.

It follows that the low-velocity tail is populated by stars that were
ejected with velocities slightly higher than VG. If we further assume
that the flight-time τ to reach any radius within rout is always smaller
than 〈tMS〉 (formally this means putting the upper integration limit
in τ equal to infinity), then all HVSs ejected with that velocity
reach 50 kpc. It may be therefore intuitive that, applying the above
considerations, equation (14) reduces to

dn

dv
(v, �r) ∝ P (vej)

∣∣
vej=VG

∫ rout

rin

dr

vej(r)
≈ P (vej)

∣∣
vej=VG

�r

VG
,

(15)

where we substitute dτ = dv/|a| in equation (14) and we use equa-
tion (13). We therefore recover the flat behaviour for v � 300 km
s−1 of the black solid line in Fig. 3. We, however, also notice that
below ∼150 km s−1 there is a deviation from a flat distribution: this
is because our assumption of τ (rin) � 〈tMS〉 breaks down, as not all
stars reach 50 kpc, causing a dearth of HVSs in that range.

As a concluding remark, we stress that, although we do not apply
it here, the result stated in equation (15) can be used to further
improve our first method, a necessity when low-velocity data will
be available.

4.2 Results

The relation given by equation (12) allows us to map a given VG

value on to the Mh–rs parameter space. This is shown in Fig. 4,
upper panel. Note that for a given choice of the baryonic mass
components of the potential, there is an absolute minimum for VG

(thereafter VG,min), that corresponds to the absence of dark matter
within 50 kpc. For our assumptions (equations 9 and 10), VG,min ≈
725 km s−1. In other words, this is the escape velocity from the GC
only due to the deceleration imparted by the mass in the disc and
bulge components.

In Fig. 4, the red dashed curve marks the iso-contour equal
to VG = 850 km s−1: above this curve VG,min � VG < 850 km
s−1. For a scale radius of rs < 30 kpc, this region corresponds to
Mh < 1.5 × 1012 M�, but, if larger rs can be considered, the Milky
Way mass can be larger. This parameter degeneracy is the result of
fitting a measurement that – as far as deceleration is concerned –
solely depends on the shape of the potential within 50 kpc: lighter,
more concentrated haloes give the same net deceleration as more
massive but less concentrated haloes. The VG = 850 km s−1 line
stands as an indicative limit above which, for a given halo mass,
HVS data can be fitted at >5 per cent significance level assuming
a B-type binary population in the GC close to that inferred in the
LMC. In fact, since in our case VG,min > 630 km s−1, the observed
Galactic binary statistics never gives a high significance level fit to
current data (see Section 3.3).

To gain further insight into the likelihood of various regions of
the parameter space, we compare our results to additional Milky
Way observations and theoretical predictions. We compute the cir-
cular velocity Vc = √

GM(<r)/r along the Galactic disc plane,
where M(<r) is the total enclosed mass (obtained integrating equa-
tion 11). We compare it to a recent compilation of data from Huang
et al. (2016), which traces the rotation curve of the Milky Way
out to ∼100 kpc. Specifically, using a Markov Chain Monte Carlo
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Figure 4. Upper panel: the ‘escape’ velocity from the GC to 50 kpc, VG, over the minimum allowed by the presence of a baryonic disc and bulge
(VG,min = 725 km s−1) is mapped on to the Mh–rs parameter space for NFW dark halo profiles using equation (12). The iso-contour line equal to VG = 850 km
s−1 is explicitly marked as red dashed line. Middle panel: same as the upper panel but overplotted are the results of our MCMC analysis of the Galactic
circular velocity data from Huang et al. (2016) (see Appendix A). Lower panel: the same as the upper panel but overplotted are results from the Eris (Guedes
et al. 2011) and EAGLE (Schaye et al. 2015) simulations. These are dark matter plus baryons simulations: the first one is a single realization of a Milky Way
type galaxy, the latter are cosmological simulations that span a wider range of masses (1010–1014 M�). Following Schaller et al. (2015), fig. 11 middle panel,
we plot the mass concentration relation found in EAGLE in our mass range, with a scatter in the concentration parameter of 25 per cent at one sigma level.

(MCMC) technique (see Appendix A), we find that a relatively
narrow region of the parameter space leads to a fair description
of the circular velocity data. As shown in the middle panel of
Fig. 4, the preferred combinations of rs and Mh lie above our
VG ∼ 850 km s−1 iso-velocity line and the best-fitting parame-
ters are Mh ≈ 8 × 1011 M� and rs ≈ 25 kpc. More generally,
rs greater than ∼30 (∼35) kpc for our Galaxy can be excluded
at, at least, one-sigma (two-sigma) level (see also Fig. A1, right-
hand panel). This may be intuitively understood as follows. At
distances where dark matter dominates, rs sets the scale beyond
which Vc ∝ √

(M(<r)/r) ∼ √
log r/r , while for r < rs Vc ∝ √

r .
Therefore, a scale radius larger than ∼30 kpc cannot account for
the observed rather flat/slowly decreasing behaviour of the circular
velocity at distances of �20 kpc (see Fig. A1, left-hand panel). In
addition, for a fixed Mh, large-scale radii produce values of Vc lower
than the measured Vc ∼ 200 km s−1in the halo region.

The lowest panel of Fig. 4 shows the values of Mh and rs found in
the Evolution and Assembly of GaLaxies and their Environments
(EAGLE) hydro-cosmological simulation (Schaye et al. 2015) and
reported by Schaller et al. (2015). The region of parameter space
within VG < 850 km s−1 and rs � 35 kpc fully overlaps with the
one-sigma and two-sigma regions determined using the haloes in the
EAGLE simulation. We also plot the Mh and rs values that describe
the halo in the Eris simulation (Guedes et al. 2011) and note that
they lie at the edge of the lowest two-sigma confidence region.

4.3 Impact of different disc and bulge models

The mapping VG → (Mh − rs) depends on the assumed bary-
onic matter density distribution, upon which there is no full gen-
eral agreement (see Bland-Hawthorn & Gerhard 2016, for a re-
cent observational review on the Galactic content and structure). In

particular, both the total baryonic mass and its concentration can
have an impact. The most recent works point towards a stellar mass
in the bulge around 1–2 × 1010 M� (e.g. Portail et al. 2015), but
one should be aware of uncertainties given by the fact that different
observational studies of the bulge constrain the mass in different re-
gions and the size of the bulge is not universally defined. Moreover,
the bulge’s mass is distributed in a complex box/peanut structure,
coexisting with an addition spherical component (see Gonzalez &
Gadotti 2016, for an observational review on the bulge). The cor-
responding three-dimensional density profile down to the sphere of
influence of Sgr A* is therefore uncertain. Likewise for the disc
component, there are ongoing efforts to try and construct a fully
consistent picture, that is currently missing (see Rix & Bovy 2013,
for a recent review on the stellar disc). Recent estimates place the
total disc mass around 5 × 1010 M�, a factor of two lighter than
the disc mass we adopt in Fig. 4.

Given these uncertainties, we here explore the impact of adopt-
ing different baryonic components than the ones we assumed in
Section 4, where a justification for that choices is stated. In par-
ticular, we explore lighter components, differently distributed. To
do this, we compare in Fig. 5 the loci of VG = 850 km s−1 in the
plane (M200–rs), given by other two Galactic potential models that
together with ours should frame a plausible uncertainty range. We
chose to plot here M200

12 instead of Mh as it is commonly used
to indicate the Milky Way dark matter mass and it can facilitate
comparisons with results from other probes.

The potential adopted by Kenyon et al. (2014) and widely used
in the HVS community is shown with a dashed line: the bulge and
disc components are described by our equations (9) and (10) but

12 This is the mass enclosed within a sphere of mean density equal to
200 times the critical density of the Universe at z = 0.
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Figure 5. Dark Halo mass (M200) versus dark matter scale radius (rs) for
three different models for the Galactic potential: the model presented in
Section 4 (‘Fiducial model’), the one adopted by Kenyon et al. (2014) and
one which combines our disc model and a symmetric average of the bulge
matter density profile, as reported by McMillan (2017). The plotted lines are
combinations of mass and radius that give an escape velocity from the GC
of 850 km s−1. Overplotted in matching colours for each Galactic potential
model are the best-fitting parameters for the Galactic circular velocity (see
Appendix A). Note that a mixed model with the McMillan (2017)’s bulge
and the Kenyon et al.’s parameters for the disc gives intermediate results.

with different parameters (Mb = 3.76 × 109 M�, rb = 0.1 kpc,
Md = 6 × 1010 M�, a = 2.75 kpc, b = 0.3 kpc). Comparing
the solid and dashed lines one concludes that, for a given rs, the
Kenyon et al.’s model gives ∼30 per cent more massive haloes. We
then calculate the VG = 850 km s−1 iso-curve for a bulge poten-
tial advocated by McMillan (2017) plus our fiducial model for the
disc (dash–dotted line). The McMillan’s bulge model adopts a total
mass of 
8.9 × 109 M� and it is not spherically symmetric. We
therefore radially average the axisymmetric density profile before
computing the corresponding potential.13 Note that the McMillan’s
bulge model is more massive than the Kenyon et al.’s one but equally
concentrated, resulting in a very different density profile. Conse-
quently, this model gives significantly more massive haloes (by a
factor �2) than we obtain with either Kenyon et al.’s or our fiducial
model.

We conclude that the impact of these uncertainties on the deter-
mination of the halo mass with HVS data is large and cannot be
ignored. In order to put robust constraints on the dark matter halo
of our Galaxy through our method a multiparameter fit of data is
therefore required where both the disc and bulge parameters need
to be left free to vary. We defer these more sophisticated analyses,
however, when more and better HVS data will be available.

On the positive side, the main features of the two regions in the
Mh–rs parameter space defined by our VG = 850 km s−1 remain
the same, regardless of the specific baryonic potentials: the best-
fitting models for the circular velocity data always lie within the
VG < 850 km s−1 region (see crosses in Fig. 5 and Appendix A), as
do the EAGLE’s predictions for �CDM compatible haloes.

13 Indeed, we are comparing our models with a radially averaged observed
distribution of HVS velocities beyond 50 kpc, we can therefore assume a
spherically symmetric bulge, since its spatial extension is no more than a
few kpc.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The analysis presented in the paper yields the following main re-
sults:

(1) For a >5 per cent (>1 per cent) significance level fit, HVS ve-
locity data alone require a Galactic potential with an escape velocity
from the GC to 50 kpc �850 km s−1 (�930 km s−1), when assum-
ing that binary stars within the innermost few parsecs of our Galaxy
are not dissimilar from binaries in other, more observationally ac-
cessible star-forming regions. For VG ∼ 630 km s−1, the binary
statistics for late B-type stars observed in the Solar neighbourhood
also provide a fit at the same significance level.

(2) When specializing to a NFW dark matter halo, we find that
the region VG � 850 km s−1 contains models that are compatible
with both HVS and circular velocity data. These models also cor-
respond to �CDM-compatible Milky Way haloes. In principle, we
cannot exclude the parameter space VG � 850 km s−1. However,
it would require us to face both an increasingly different statistical
description of the binary population in the GC with respect to cur-
rent observations and dark matter haloes that are inconsistent with
predictions in the �CDM model at one-sigma level or more (see
lower panel of Fig. 4).

(3) The result stated in point 2 is independent of the assumed
baryonic components of the Galactic potential, across a wide range
for plausible masses and scale radii.

(4) However, the specific mapping of VG values on to the
Mh–rs parameter space is highly dependent on the assumed bulge
and disc models (see Section 4.3). Both the baryonic total mass and
its distribution affect the results. In general, works that try to infer
the dark matter halo mass from HVS data should fold in the un-
certainties linked to our imperfect knowledge of the baryonic mass
distribution.

These results rely on certain assumptions for the binary pop-
ulation in the GC whose impact we now discuss. Following the
same computational procedure previously presented for our fidu-
cial model, we have found that a different mass function for the
primary stars (either a Salpeter or a top-heavy mass function) or a
change in metallicity (from supersolar to solar) do not substantially
alter our results. However, the choice of the minimum companion
mass (i.e. mmin in equation 3) does lead to different conclusions.
In particular, the higher mmin, the steeper the binary distributions
should be to fit the data, even for low (<850 km s−1) VG. For exam-
ple, for mmin = 0.3 M� (instead of 0.1 M�) and VG = 760 km s−1

the stripe of minima for the K–S test runs along the γ ≈ −6.5 and
α ≈ 4.5 directions, very far from the observed values. Currently,
there is no observational or theoretical reason why we should adopt
a higher minimum mass than the one usually assumed (‘the brown
dwarf’ limit), but this exercise shows that better quality and quantity
HVS data has the potential to statistically constrain the minimum
mass for a secondary, which may shed light on star and/or binary
forming mechanisms at work in the GC.

A second set of uncertainties that may affect our conclusions per-
tain to the observed binary parameter distributions in the 30 Doradus
region, that we use as guidance. The 30 Doradus B-type sample of
Dunstall et al. (2015) is based on six epochs of spectra, that do not
allow for a full orbital solution for each system. These authors’ re-
sults are mainly based on the distribution of the maximum variation
in radial velocities per system, from where they statistically derive
constraints for the full sample. Another point worth stressing is that
the 30 Doradus B-type sample is of early-type stars (mass roughly
around 10 M�) and distributions for late B-type star binaries in
star-forming regions may be different. However, these latter are not
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Figure 6. Contour plots for K–S test results in the parameter space Mh–rs, for fixed α, γ pairs (see panels’ label and star marks in Fig. 4). Velocity distributions
are computed radially decelerating each star in a given potential (see Section 4). The white dashed lines are iso-contour lines for a given significance level ᾱ.
Regions at the left of each line have a value of ᾱ larger than that stated in the corresponding label.

currently available, and therefore the Dustall et al. sample remains
the most relevant to guide our analysis in those regions. Our state-
ment is therefore that the statistical distributions derived from this
sample (including the statistical errors on the power-law indexes)
can reproduce HVS data at a several percentage confidence level.
Far more reliable is the statistical description of observed late B-type
binaries in the Solar neighbourhood, that can be easily reconciled
with HVS data only for quite low VG potentials.

A possibility that we have not so far discussed is that dynamical
processes that inject binaries within Sgr A*’s tidal sphere modify
the natal mass ratio and separation distributions. Unfortunately, as
far as we know, dedicated studies are missing and we will then only
discuss the consequence of the classical loss-cone14 theory dealing
with two-body encounters (e.g. Frank & Rees 1976; Lightman &
Shapiro 1977) as derived in Rossi et al. (2014, section 3). Their
considerations show that even allowing for extreme regimes, one
would expect no modification in the mass ratio distribution and a
modification in the separation distribution by no more than a factor
of ‘a’ (i.e. a natal Öpik’s law would evolve into fa ∼ const.). This
would increase the VG range (VG � 750 km s−1) compatible with
Solar neighbourhood observations (see Fig. 2). Besides that, all our
results remain unchanged.

We would also like to remark here that, although observed binary
parameters give acceptable fits for VG < 930 km s−1, the K–S test
results currently prefer even steeper mass ratio and binary separation
distributions (γ ∼ −4.5 instead of γ ∼ −3.5 and/or α ∼ 2 instead of
−1, see Fig. 6). This larger |γ | value gives a steeper high-velocity
tail, which better match the lack of observed >700 km s−1 HVSs.
From the above considerations, modification of the natal distribution
by standard two-body scattering into the binary loss cone may not be

14 The loss cone theory deals with processes by which stars are ‘lost’ because
they enter the tidal sphere, in which they will suffer tidal disruption on a
dynamical time. The name comes from the fact that the tidal sphere is defined
in velocity space at a fixed position as a ‘cone’ with an angle proportional
to the angular momentum needed for the (binary) star to be put on an orbit
grazing the tidal radius (see for e.g. Alexander 2005, section 6.1.1).

held responsible. Assuming that the halo actually has VG < 930 km
s−1, one possible inference is indeed that γ ∼ −4.5 is a better
description of the B-type binary natal distribution in the GC, close
but not identical to that in the Tarantula Nebula.

It is of course possible that some other dynamical interactions
(e.g. binary softening/hardening, collisions) or disruption of bina-
ries in triples could be indeed responsible for a change in γ and a
larger one in α. However, for massive binaries dynamical evolution
of their properties may be neglected in the GC, because it would
happen on time-scales longer than their lifetime (Pfuhl et al. 2014).
On the contrary, it may be relevant for low-mass binaries, but only
within the inner 0.1 pc (Hopman 2009). Nevertheless, these possi-
bilities would be very intriguing to explore in depth, if more and
better data on HVSs together with a more solid knowledge of binary
properties in different regions will still indicate the need for such
processes.

Finally, given the paucity of data, we did not use any spatial dis-
tribution information but we rather fitted the velocity distribution
integrated over the observed radial range. This precluded the possi-
bility to meaningfully investigate anisotropic dark matter distribu-
tions and we preferred to confine ourselves to spherically symmetric
potentials.

All the above uncertainties and possibilities can and should be
tested and explored when a HVS data sample that extends below and
above the velocity peak is available. Such a data set would allow
us to break the degeneracy between halo and binary parameters,
as the rise to the peak and the peak itself are mostly sensitive
to the halo properties, whereas the high-velocity tail is primarily
shaped by the binary distributions. This will be achieved in the
coming few years thanks to the ESA mission Gaia, whose catalogue
should contain at least a few hundred HVSs with precise astrometric
measurements. Moreover, Gaia will greatly improve our knowledge
of binary statistics in the Galaxy (but not directly in the GC, where
infrared observations are required) and in the LMC allowing us to
draw more robust inferences.

In conclusion, this paper shows for the first time the potential
of HVS data combined with our modelling method to extract joint
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information on the GC and (dark) matter distribution. It is clear,
however, that the full realization of this potential requires a larger
and less biased set of data. The ESA Gaia mission is likely to
provide such a sample within the coming five years.
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Figure A1. Left-hand panel: Galactic circular velocity. Data points with error bars are taken from Huang et al. (2016). The orange and yellow regions
correspond to the 68th and 95th credibility interval obtained with the MCMC described in the text for our fiducial Galactic potential model. Red dotted and
blue dashed lines represent the contribution from the bulge and the disc, respectively, whereas the dash-dotted black line indicates the contribution from the
best-fitting NFW halo. The solid black line corresponds to the total circular velocity for the best-fitting model (χ2

red = 0.95). Right-hand panel: posterior
distributions of the two halo parameters, log10[Mh/M�] and rs, as obtained from the MCMC used to fit the Galaxy circular velocity measurements with the
three models discussed in the text (see also legend). The diagonal panels show the posterior distributions for each parameter. The lower left panel shows the
two-dimensional marginalized posterior distributions. As expected, the two parameters are strongly degenerate. Orange (yellow) region indicates the extent of
the 68 per cent (95 per cent) credibility interval.

A P P E N D I X A : MA R KOV C H A I N MO N T E
C A R L O TO FI T T H E O B S E RV E D C I R C U L A R
V E L O C I T Y

To assess which ranges of the halo mass and scale radius are compat-
ible with current constraints of the Milky Way halo, we employ cir-
cular velocity measurements presented in Huang et al. (2016) where
the rotation curve of the Milky Way out to ∼100 kpc has been con-
structed using ∼16 000 primary red clump giants in the outer disc
selected from the LAMOST Spectroscopic Survey of the Galactic
Anti-centre (LSS-GAC) and the SDSS-III/APOGEE survey, com-
bined with ∼5700 halo K giants selected from the SDSS/SEGUE
survey. These measurements are reported in Fig. A1, left-hand panel
as green points with error bars.

We remind the reader that our model for the matter density (and
thus the circular velocity) of the Milky Way consists of three com-
ponents: a bulge, a disc and an extended (dark matter) halo. While
bulge and disc dominate the circular velocity at relatively small
scales (below about 30 kpc), larger scales are dominated by the
dark matter halo. Each of these components for all models we
consider is described in detail in the main body of the paper (see
Sections 4 and 4.3). To fit the data described above we fix the pa-
rameters that refers to the bulge and the disc, whereas we consider
as free parameters those related to the dark matter halo. We remind
that dark matter halo is assumed to have a NFW matter density
profile, completely characterized by two parameters: the total halo
mass, Mh and the scale radius, rs.

The two-dimensional parameter space (Mh, rs) is sampled
with an affine invariant ensemble MCMC sampler (Goodman &
Weare 2010). Specifically, we use the publicly available code EMCEE

(Foreman-Mackey et al. 2013). We run EMCEE with three separate
chains with 200 walkers and 4500 steps per walker. Using the re-
sulting 2700 000 model evaluations, we estimate the parameter
uncertainties. We assess the convergence of the chains by comput-
ing the autocorrelation time (see e.g. Akeret et al. 2013) and finding

that our chains are about a factor of 20 times longer than it is needed
to reach 1 per cent precision on the mean of each fit parameter.

The left-hand panel of Fig. A1 shows the circular velocity as
a function of distance from the GC. Green points with error bars
are taken from table 3 of Huang et al. (2016), whereas orange and
yellow shaded regions correspond to the 68th and 95th credibility
intervals obtained from the MCMC procedure described above for
our fiducial model (Section 4). Different line styles and colours refer
to the different contributions as detailed in the legend. The MCMC
leads to a best-fitting χ2 of 39.07 with Ndata = 43 data points and
Npar = 2 model parameters, thus resulting in a satisfactory reduced
χ2

red = χ2/(Ndata − Npar) = 0.95. Comparable level of agreement
between models15 and data is obtained when adopting (i) a model
that combines our fiducial disc parameters with a lighter bulge from
McMillan (2017) (χ2

red = 1.34) or (ii) Kenyon et al. (2014)’s much
lighter disc and bulge models (χ2

red = 0.88).
The right-hand panels of Fig. A1 show the posterior distribution

of the halo parameters for the three baryonic models mentioned
above. As expected, the two halo parameters are strongly degen-
erate but the sampling strategy has nevertheless finely sampled
the region of high likelihood. For our fiducial baryonic model, we
find that log[Mh/ M�] = 11.89 ± 0.18 and rs = 25.4 ± 7.3 kpc,
where we quote the median and errors are derived from the 16th
and 84th percentiles. For (i) instead the best-fitting parameters
are log[Mh/ M�] = 11.42 ± 0.06 and rs = 7.5+1.0

−0.9 kpc, while
(ii) gives intermediate results: log[Mh/ M�] = 11.72 ± 0.06 and
rs = 12.99+1.4

−1.3 kpc.

15 A mixed model that combines Kenyon et al.’s disc and McMillan’s bulge
gives results very similar to that obtained with Kenyon et al. (2014) disc and
bulge models, so we will not discuss it further.
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