
Mon. Not. R. Astron. Soc. 376, 841–860 (2007) doi:10.1111/j.1365-2966.2007.11493.x

Towards a concordant model of halo occupation statistics

Frank C. van den Bosch,1� Xiaohu Yang,2 H. J. Mo,3 Simone M. Weinmann,4
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ABSTRACT
We use the conditional luminosity function (CLF) and data from the 2-degree Field Galaxy

Redshift Survey (2dFGRS) to constrain the average relation between light and mass in a

Lambda cold dark matter (�CDM) cosmology with �m = 0.23 and σ 8 = 0.74 (hereafter

WMAP3 cosmology). Reproducing the observed luminosity dependence of the galaxy two-

point correlation function results in average mass-to-light ratios that are ∼35 per cent lower than

those in a �CDM cosmology with �m = 0.3 and σ 8 = 0.9 (hereafter WMAP1 cosmology). This

removes an important problem with previous halo occupation models which had a tendency to

predict cluster mass-to-light ratios that were too high. For the WMAP3 cosmology, our model

yields average mass-to-light ratios, central galaxy luminosities, halo occupation numbers,

satellite fractions and luminosity-gap statistics, that are all in excellent agreement with those

obtained from a 2dFGRS group catalogue and from other independent studies. We also use

our CLF model to compute the probability distribution P(M | Lcen), that a central galaxy of

luminosity Lcen resides in a halo of mass M. We find this distribution to be much broader

than what is typically assumed in halo occupation distribution models, which has important

implications for the interpretation of satellite kinematics and galaxy–galaxy lensing data.

Finally, reproducing the luminosity dependence of the pairwise peculiar velocity dispersions

in the 2dFGRS requires relatively low mass-to-light ratios for clusters and a satellite fraction

that decreases strongly with increasing luminosity. This is only marginally consistent with

the constraints obtained from the luminosity dependence of the galaxy two-point correlation

function. We argue that a cosmology with parameters between those of the WMAP1 and

WMAP3 cosmologies is likely to yield results with a higher level of consistency.

Key words: methods: statistical – galaxies: formation – galaxies: fundamental parameters –

galaxies: haloes – cosmological parameters – dark matter.

1 I N T RO D U C T I O N

Using the observed distribution of galaxies to constrain the

cosmology-dependent matter distribution requires a detailed knowl-

edge of galaxy bias. The development of the halo model (see Cooray

& Sheth 2002, for a detailed review), in which the matter distribu-

tion is interpreted in terms of its halo building blocks, has provided

us with a convenient way to quantify galaxy bias. The concept is

that all galaxies reside in dark matter haloes, and that these haloes

themselves are a biased tracer of the dark matter mass distribution,

the so-called halo bias. As a consequence of the hierarchical na-

ture of structure formation, more massive haloes are more strongly

�E-mail: vdbosch@mpia.de

clustered (Cole & Kaiser 1989; Mo & White 1996, 2002), and the

halo bias is thus an increasing function of halo mass. Galaxy bias is

then completely specified by a description of how galaxies of dif-

ferent properties are distributed over dark matter haloes of different

masses.

In the standard halo occupation models, one tries to constrain the

halo occupation distribution (HOD) P(N | M), which expresses the

conditional probability that a halo of mass M contains N galaxies

(of a specified type). The first moment of this distribution func-

tion, 〈N〉M , expresses the average number of galaxies as function

of halo mass. Together with the halo bias bh(M), this completely

specifies the galaxy bias on large scales. On smaller scales, how-

ever, additional information is required, such as the second moment

of the HOD, 〈N(N − 1)〉M , and information regarding the spa-

tial distribution of galaxies within individual haloes (e.g. Seljak
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2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002; Cooray

& Sheth 2002; Kang et al. 2002; Berlind et al. 2003). Additional con-

straints on the higher moments of P(N | M) can be obtained from the

n-point correlation functions with n � 3 (Takada & Jain 2003; Zheng

2004b).

Numerous studies have shown that the observed two-point cor-

relation function (2PCF) of galaxies tightly constrains the first and

second moments of P(N | M) (e.g. Jing, Mo & Börner 1998; Peacock

& Smith 2000; Magliocchetti & Porciani 2003; Scranton 2003;

Zehavi et al. 2004, 2005; Collister & Lahav 2005; Tinker et al.

2005), and that the resulting constraints are in good agreement with

the occupation statistics of dark matter subhaloes (e.g. Kravtsov et al.

2004; van den Bosch, Tormen & Giocoli 2005b). The HOD mod-

elling has also been applied to various galaxy populations at medium

to high redshifts (e.g. Bullock, Wechsler & Somerville 2002; Zheng

2004a; Lee et al. 2006; Phleps et al. 2006) as well as to quasars

(Porciani, Magliocchetti & Norberg 2004). Furthermore, Zheng &

Weinberg (2005) have shown that cosmology and galaxy bias are

not degenerate. This means that one cannot arbitrarily modify the

HOD and fit the observed clustering of galaxies for any cosmology;

the HOD technique can simultaneously constrain both the galaxy

bias and cosmology (see also Zheng et al. 2002; van den Bosch, Mo

& Yang 2003b; Abazajian et al. 2005).

Since we know that galaxy bias is a function of galaxy proper-

ties, such as luminosity and colour, a natural extension of the HOD

modelling is to consider the occupation statistics as a function of

galaxy properties. In Yang, Mo & van den Bosch (2003), we took a

first step in this direction and introduced the conditional luminosity

function (hereafter CLF). The CLF, �(L | M) dL, gives the average

number of galaxies with luminosity L ± dL/2 that reside in a halo

of mass M. Integrating the CLF over a given luminosity range [L1,

L2], yields the average number of galaxies with L1 � L � L2 that

reside in a halo of mass M:

〈N 〉M =
∫ L2

L1

�(L | M) dL. (1)

Thus, the CLF contains the same information as the first moment

of the HOD P(N | M), but it does so for any luminosity interval. In

addition, the CLF also specifies the total, average luminosity in a

halo of mass M,

〈L〉M =
∫ ∞

0

�(L | M) L dL, (2)

and thus specifies the average relation between light and mass in

the Universe. As shown in Yang et al. (2003), the CLF is tightly

constrained by the observed luminosity function and the correlation

lengths of the galaxy population as function of luminosity. In subse-

quent papers, the CLF has been used to study the occupation statis-

tics as function of both luminosity and galaxy type at low redshift

(van den Bosch, Yang & Mo 2003a; Cooray 2005a, 2006; Yang et al.

2005b) and high redshift (Yan, Madgwick & White 2003; Cooray

2005b, 2006), to study the environment dependence of the galaxy

luminosity function (Mo et al. 2004), to constrain cosmological pa-

rameters (van den Bosch et al. 2003b; Tinker et al. 2005), to study

the pairwise peculiar velocity dispersion (PVD) of galaxies (Jing &

Börner 2004; Yang et al. 2004; Li et al. 2006), to construct detailed

mock galaxy redshift surveys (MGRSs) (Yan, White & Coil 2004;

Yang et al. 2004; van den Bosch et al. 2005a) and to investigate the

luminosity and type dependence of the three-point correlation func-

tion (Wang et al. 2004). In addition, the CLF has proven a useful aid

for interpreting the kinematics of satellite galaxies (van den Bosch

et al. 2004), for constructing galaxy group catalogues (Yang et al.

2005a, hereafter YMBJ), and for furthering our understanding of

the galaxy luminosity function (Cooray & Milosavljević 2005).

Clearly, the CLF formalism is a powerful, statistical tool that has

many applications. However, the occupation statistics inferred from

the observed clustering data are cosmology dependent. Virtually all

studies mentioned above have adopted a Lambda cold dark matter

(�CDM) concordance cosmology with a matter density �m = 0.3

and a Harrison–Zel’dovich, initial power spectrum with a normal-

ization σ 8 = 0.9. Recently, however, the 3-yr cosmic microwave

background (CMB) data of the Wilkinson Microwave Anisotropy
Probe (WMAP) mission (Hinshaw et al. 2006; Page et al. 2006) have

argued in favour of a flat �CDM cosmology with a significantly re-

duced �m and σ 8, and with a spectral index that is significantly

smaller than unity (Spergel et al. 2006). This has a non-negligible

impact on the halo mass function and the halo bias, both of which

play an important role in the HOD modelling. The purpose of this

paper is to revisit some of our conclusions based on the CLF formal-

ism in the revised concordance cosmology. In particular, we want

to investigate (i) whether we can still simultaneously fit the galaxy

LF and the luminosity dependence of the galaxy correlation length,

(ii) what this implies for the average relation between light and mass

in the Universe and (iii) whether the resulting CLF is consistent with

a range of other observations, including various occupation statistics

inferred from galaxy group catalogues, the luminosity dependence

of the PVDs, and the satellite fractions inferred from galaxy–galaxy

lensing studies. Finally, we improve upon our previous analysis by

taking account of the scale dependence of the halo bias, and by

properly modelling the observational data over the light-cone.

This paper is organized as follows. In Section 2, we describe the

theoretical framework of the CLF formalism, including a description

of modelling on the light-cone, and we discuss how small changes in

cosmological parameters impact on various statistics of dark matter

haloes. Section 3 presents the new CLF for the new WMAP concor-

dance cosmology, and compares the mass-to-light ratios, satellite

fractions and the luminosity gap statistic predicted by that model

to observational data. Section 4 presents a detailed analysis of the

halo occupation numbers predicted by our CLF model, which are

compared to other HOD models. In Section 5, we use MGRSs

to study the PVDs of galaxies and their luminosity dependence.

We summarize our results in Section 6. Throughout this paper log

represents the 10-based logarithm, while ln represents the natural

logarithm.

2 T H E O R E T I C A L F R A M E WO R K

2.1 Light-cone modelling

As shown in Yang et al. (2003), the CLF can be tightly constrained

by fitting it to the galaxy luminosity function, �(L), and to the galaxy

correlation lengths as function of luminosity, r0(L). A complication

arises from the fact that these observational data have been deter-

mined on a light-cone. In particular, each data point typically derives

from a different light-cone specified by different redshift limits zmin

and zmax. For example, in a flux-limited sample, one has that zmax =
zmax(L).

Since the halo mass function and the halo bias are both functions

of redshift, one needs to properly integrate the model over the light-

cone before comparing it to the data. This becomes more and more

important when zmax � zmin. However, even for relatively nearby

surveys, such as the 2-degree Field Galaxy Redshift Survey (2dF-

GRS) considered in this paper, ignoring this light-cone modelling

results in �(L) and r0(L), for the same CLF model, that are different
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by 5–15 per cent (typically the errors are larger for brighter sam-

ples, since they cover a larger volume). Since this is smaller than, or

comparable to, the errors on the data, the light-cone modelling only

has a very marginal effect on the results presented here. However,

it cannot be ignored in future data sets that cover a larger redshift

range; the method outlined below illustrates how one can take the

light-cone effects into account.

Within the CLF formalism, the light-cone integrated LF is given

by

�(L) = 1

V

∫ zmax

zmin

dz
dV

dz

∫ ∞

0

dM �(L | M, z) n(M, z), (3)

where dV/dz is the comoving volume element per unit solid angle.

In what follows we will assume that the CLF does not evolve with

redshift, i.e. �(L | M, z) = �(L | M), which implies that we can write

�(L) =
∫ ∞

0

�(L | M) neff(M) dM (4)

with

neff(M) ≡ 1

V

∫ zmax

zmin

dz
dV

dz
n(M, z). (5)

Note that this effective mass function is different for each data point,

i.e. for each different (zmin, zmax). Although the assumption that the

CLF does not evolve with redshift is likely to be an oversimplifica-

tion, it should not have a significant impact on our results. After all,

the data used to constrain our models are restricted to 0.02 � z �
0.15. As discussed above, for this small redshift range the light-cone

modelling has an almost negligible effect on our model parameters,

and it is unlikely that �(L |M) will have evolved much over this

small redshift interval. In the case of the clustering data, we proceed

as follows. At a given redshift, and on large scales, the 2PCF for

dark matter haloes of mass M can be defined as

ξhh(r , M, z) = b2
h(M, r , z) ξdm(r , z) (6)

with bh(M, r, z) being the scale-dependent halo bias and ξ dm(r, z)

being the evolved, non-linear correlation function of the dark matter

at redshift z. In what follows we assume (i) that the mass dependence

of the halo bias is separable from the scale dependence and (ii) that

the scale-dependent part is independent of redshift. We thus write

that

b2
h(M, r , z) = b̃2

h(M, z) ζ (r ). (7)

Using large numerical simulations Tinker et al. (2005) have shown

that assumption (i) is accurate and that, at z = 0,

ζ (r ) = [1 + 1.17 ξdm(r , 0)]1.49

[1 + 0.69 ξdm(r , 0)]2.09
. (8)

Our assumption (ii) implies that this equation also holds at z > 0.

Although this is untested at present, and may well be incorrect, it

is unlikely to have a significant effect on our results. After all, the

correction for the scale dependence of the halo bias is only important

for r � 3 h−1 Mpc, which is smaller than the scales probed here.

Indeed, if we completely ignore the scale dependence (i.e. if we set

ζ = 1), we obtain results that are only ∼5 per cent different, which

is smaller than the measurements errors.

The mass and redshift dependence of the halo bias can be written

as

b̃h(M, z) = 1 + 1√
aδc(z)

[√
a (aν2) + √

a b (aν2)1−c−

(aν2)c

(aν2)c + b (1 − c)(1 − c/2)

]
, (9)

with a = 0.707, b = 0.5, c = 0.6 and ν = ν(M, z) = δc(z)/σ (M)

(Sheth, Mo & Tormen 2001). Here δc(z) is the critical overdensity

required for spherical collapse at redshift z, and σ (M) is the linear

theory rms mass fluctuation on the mass scale M. Tinker et al. (2005),

using state-of-the-art numerical simulations, reinvestigated the mass

dependence of the halo bias, and found that equation (9) accurately

fits their simulations, but with b = 0.35 and c = 0.80, which are the

values we adopt throughout.

The 2PCF for dark matter haloes of mass M in the volume of a

light-cone with zmin � z � zmax is given by

ξhh(r , M) =
∫ zmax

zmin
dz dV

dz n2(M, z)b2
h(M, r , z)ξdm(r , z)∫ zmax

zmin
dz dV

dz n2(M, z)
(10)

(cf. Hamana et al. 2001). Using that, on sufficiently large (linear)

scales, ξ dm(r, z) = D2(z) ξ dm(r, 0), with D(z) linear growth rate

normalized to unity at z = 0, we obtain that

ξhh(r , M) = b2
h,eff(M) ζ (r ) ξdm(r , 0) (11)

with

b2
h,eff(M) =

∫ zmax

zmin
dz dV

dz n2(M, z) D2(z) b̃2(M, z)∫ zmax

zmin
dz dV

dz n2(M, z)
. (12)

Using this effective halo bias, we can write the 2PCF for galaxies

of luminosity L, on large scales, as

ξgg(r , L) = b2
g,eff(L) ζ (r ) ξdm(r , 0), (13)

where the effective galaxy bias bg,eff(L) is related to the effective

halo bias, the effective halo mass function, and the CLF according

to

bg,eff(L) = 1

�(L)

∫ ∞

0

�(L | M) bh,eff(M) neff(M) dM . (14)

2.2 Cosmology

From the above it is clear that the computation of the galaxy cor-

relation lengths, r0(L), defined by ξ gg(r0, L) = 1, requires the halo

mass function, n(M, z), the halo bias function, b̃h(M, z), and the

dark matter correlation function, ξ dm(r, z), all of which are cosmol-

ogy dependent. In this paper, we focus on a flat �CDM cosmol-

ogy with a matter density �m = 0.238, a baryonic matter density

�b = 0.041, a Hubble parameter h = H0/(100 km s−1 Mpc−1) =
0.734, a power-law initial power spectrum with spectral index ns =
0.951 and a normalization σ 8 = 0.744. These are the parameters

that best fit the 3-yr WMAP data (Spergel et al. 2006), and we will

refer to this cosmology in what follows as the WMAP3 cosmol-

ogy. For comparison, we also compare some of our results to a flat

�CDM cosmology with �m = 0.3, �b = 0.04, h = 0.7, ns = 1.0 and

σ 8 = 0.9. With strong support from the first year data release of the

WMAP mission, this model has been considered the ‘concordance’

cosmology in the vast majority of all HOD studies. In what follows

we will refer to a cosmology with these parameters as the WMAP1

cosmology.

Throughout this paper, we compute the halo mass function using

the form suggested by Sheth et al. (2001), which has been shown to

be in excellent agreement with numerical simulations as long as halo

masses are defined as the masses inside a sphere with an average

overdensity of 180 (Jing 1998; Sheth & Tormen 1999; Jenkins et al.

2001; White 2002). Therefore, in what follows we consistently use

that definition of halo mass when referring to M. The linear power

spectrum of density perturbations is computed using the transfer
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Figure 1. Several characteristics of dark matter haloes at z = 0 in the WMAP1 and WMAP3 cosmologies. From left to right the panels show the halo mass

functions, the halo bias as function of halo mass and the halo concentration parameter cvir, again as function of halo mass. Note that in the new WMAP3

cosmology, the abundance of massive haloes is strongly reduced. In addition, dark matter haloes are more strongly biased and less strongly concentrated.

Table 1. Cosmological parameters.

ID �m �� �b h ns σ 8 M∗ rdm
0 a0 a1 a2 c0 c1 c2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

WMAP1 0.30 0.70 0.04 0.70 1.0 0.90 8.57 × 1012 5.10 −0.056 0.994 −0.001 11.07 −2.49 0.11

WMAP3 0.238 0.762 0.041 0.734 0.951 0.744 1.36 × 1012 4.27 −0.078 0.991 −0.002 7.92 −1.70 0.03

Notes. Parameters of the two cosmological models discussed in this paper. Column (1) indicates the name by which we refer to these cosmologies

in the paper. Columns (2)–(7) list the matter density, the energy density associated with the cosmological constant, the baryon density, the Hubble

parameter, the spectral index and the power-spectrum normalization. Column (8) lists the characteristic halo mass (in h−1 M�), defined as the mass scale

at which the mass variance σ (M) = 1.68. Column (9) lists the correlation length (in h−1 Mpc) of the evolved, non-linear matter field at z = 0. Finally,

Columns (10)–(15) list the fitting parameters that describe the relation between M and Mvir (equation 15), and between halo concentration cvir and M (equation 16).

function of Eisenstein & Hu (1998), which properly accounts for

the baryons, while the evolved, non-linear power spectrum, required

to compute the dark matter correlation function, is computed using

the fitting formula of Smith et al. (2003).

The left-hand panel of Fig. 1 plots the halo mass functions at z =
0 for the WMAP1 and WMAP3 cosmologies. Note that the new con-

cordance cosmology predicts much fewer massive haloes: in fact,

the number density of haloes with M = 1015 h−1 M� (1014 h−1 M�)

is only 19 per cent (48 per cent) of what it is in the WMAP1 cosmol-

ogy. Clearly, all galaxies assigned to these haloes in the WMAP1

HOD models now have to be redistributed over other haloes. The

middle panel of Fig. 1 plots the halo bias at z = 0 as function

of halo mass. Although the overall clustering strength of the dark

matter is reduced in the WMAP3 cosmology with respect to that

in the WMAP1 cosmology (see Table 1), the halo bias has be-

come larger. The difference is largest at M � 3 × 1014 h−1 M�,

where the halo bias is ∼1.5 times larger than that in the WMAP1

cosmology.

As mentioned above, our halo masses M are defined as the masses

inside a sphere with an average overdensity of 180. Another defini-

tion of halo mass that is often adopted is the so-called virial mass,

Mvir, which indicates the mass inside a sphere with an average den-

sity equal to �vir times the critical density for closure. The value of

�vir follows from the solution to the collapse of a spherical top-hat

perturbation under the assumption that the halo has just virialized,

and depends on cosmology through �m(z) (Peebles 1980; see Bryan

& Norman 1998 for a useful fitting function). Under the assumption

that the density distribution of dark matter haloes is well fit by a

NFW profile (Navarro, Frenk & White 1997), one can convert M to

Mvir (and vice versa) as long as one knows the halo concentration

parameter cvir. Using the cvir(Mvir) of Macciò et al. (2006), we find

that the relation between M and Mvir is accurately fit (to better than

1 per cent over the mass range 109 � M � 1016 h−1 M�) by

log

[
Mvir

1012 h−1 M�

]
= a0 + a1 y + a2 y2 (15)

with y = log[M/1012 h−1 M�]. Over the same mass range, the re-

lation between cvir and M (not Mvir) is accurately fit by

cvir = c0 + c1 y + c2 y2. (16)

The best-fitting parameters ai and ci (i = 0, 1, 2), for both the WMAP1

and the WMAP3 cosmologies, are listed in Table 1. The resulting

cvir(M) are shown in the right-hand panel of Fig. 1: in the WMAP3

cosmology halo concentrations are ∼30 per cent smaller than those

in the WMAP1 cosmology. This may have a non-negligible impact

on the 2PCF on small scales (r � 50 h−1 kpc). In addition, this

reduction in halo concentrations also has important implications for

the Tully–Fisher zero-point (see discussions in van den Bosch et al.

2003b and Dutton et al. 2007).

2.3 The conditional luminosity function

Following Yang et al. (2003), we parametrize the CLF by a Schechter

function

�(L | M)dL = �̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL, (17)

where L̃∗ = L̃∗(M), α̃ = α̃(M) and �̃∗ = �̃∗(M) are all functions

of halo mass M. We write the average, total mass-to-light ratio of a

halo of mass M as

〈M/L〉M = 1

2

(
M

L

)
0

[(
M

M1

)−γ1

+
(

M

M1

)γ2
]

. (18)
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This parametrization has four free parameters: a characteristic mass

M1, for which the mass-to-light ratio is equal to (M/L)0, and two

slopes, γ 1 and γ 2, that specify the behaviour of 〈M/L〉M at the low-

and high-mass ends, respectively.

A similar parametrization is used for the characteristic luminosity

L̃∗(M):

M

L̃∗(M)
= 1

2

(
M

L

)
0

f (α̃)

[(
M

M1

)−γ1

+
(

M

M2

)γ3
]
, (19)

with

f (α̃) = �(α̃ + 2)

�(α̃ + 1, 1)
. (20)

Here �(x) is the Gamma function and �(a, x) is the incomplete

Gamma function. This parametrization has two additional free pa-

rameters: a characteristic mass M2 and a power-law slope γ 3.

In our previous CLF studies, we used to set 〈M/L〉M = (M/L)cl

for haloes with M � 1014 h−1 M�, with (M/L)cl being a free param-

eter that describes the average mass-to-light ratio of clusters. This

was motivated by a number of observational studies (Bahcall, Lubin

& Dorman 1995; Bahcall et al. 2000; Sanderson & Ponman 2003),

which indicated that 〈M/L〉M is roughly constant on the scale of

galaxy clusters. This was further supported by semi-analytical mod-

els of galaxy formation, which revealed a similar behaviour (see fig.

14 in van den Bosch et al. 2003a). However, a number of studies have

suggested that the average mass-to-light ratio of clusters continues

to increase with mass (Adami et al. 1998; Bahcall & Comerford

2002; Girardi et al. 2002; Marinoni & Hudson 2002; Lin, Mohr &

Stanford 2003, 2004; Ramella et al. 2004; Rines et al. 2004; Vale

& Ostriker 2004, 2006; Popesso et al. 2005). Especially the more

recent studies have convincingly shown that 〈M/L〉M ∝ M0.2±0.08 on

the scale of clusters, virtually independent of the photometric band

in which the luminosities are measured (Popesso et al. 2005, and

references therein). In this paper, we therefore do not force 〈M/L〉M

to become constant at large M. Rather we simply adhere to the func-

tional form of equation (18), according to which 〈M/L〉M ∝ Mγ2

at large M. As we will show below, this actually yields values for

γ 2 that are in excellent agreement with the cluster data discussed

above. In order to allow for a comparison with our previous models,

we define (M/L)cl as the mass-to-light ratio for haloes with M =
1014 h−1 M�.

For α̃(M), we adopt a simple linear function of log(M),

α̃(M) = α15 + η log(M15), (21)

with M15 being the halo mass in units of 1015h−1 M�, α15 =
α̃(M15 = 1) and η describes the change of the faint-end slope α̃

with halo mass. Note that once α̃ and L̃∗ are given, the normaliza-

tion �̃∗ of the CLF is obtained through equation (18), using the fact

that the total (average) luminosity in a halo of mass M is given by

〈L〉M =
∫ ∞

0

�(L | M) L dL = �̃∗ L̃∗ �(α̃ + 2). (22)

Finally, we introduce the mass scale Mmin below which we set the

CLF to zero; i.e. we assume that no stars form inside haloes with

M < Mmin. Motivated by reionization considerations (see Yang et al.

2003 for details), we adopt Mmin = 109 h−1 M� throughout. Note,

however, that this lower mass limit does not significantly influence

our results. Changing Mmin to 108 or 1010 h−1 M� has only a very

modest impact on the results presented below.

As we will show below, this Schechter-function parametrization

of the CLF yields good fits to the data. In addition, using galaxy

group catalogues, Yang et al. (2005b) have shown that the Schechter

form is also consistent with direct observations of the CLF in the

bJ band. On the other hand, the analysis of the luminosity func-

tions of clusters and groups by Hansen et al. (2005) suggests that

on group-scales the r-band CLF is not well-fitted by a Schechter

function (except when the brightest cluster galaxy is removed). A

similar deviation was found by Zheng et al. (2005) for the con-

ditional stellar mass function in semi-analytical models. However,

the g-band CLF in their models has a form that is very similar

to a Schechter function. We therefore believe that our assumption

of a Schechter-function form for the CLF is appropriate for the

bJ band used here. However, we emphasize that it is important to

keep an open mind for alternative functional forms (see for ex-

ample Cooray 2005a, 2006; Cooray & Milosavljević 2005; Zheng

et al. 2005).

2.4 Centrals and satellites

The CLF parametrization presented above does not distinguish a

priori between central and satellite galaxies. This is somewhat un-

fortunate, as there are good reasons to treat these kinds of galaxies

separately (see Zheng et al. 2005, and references therein). Although

it is straightforward to devise CLF parametrizations with a natural, a

priori split in central and satellite galaxies (e.g. Cooray 2005a, 2006;

Cooray & Milosavljević 2005), we stick to our Schechter-function

parametrization and apply a posteriori split into central and satel-

lite components. In particular, we assume that the central galaxy is

always the brightest galaxy in a halo.

Following van den Bosch et al. (2004) we write the conditional

probability distribution P(Lcen | M) dLcen, with Lcen being the lumi-

nosity of the central galaxy, as the product of the CLF and a new

function f (Lcen, M) which depends on how galaxy luminosities are

‘drawn’ from the CLF:

P(Lcen | M)dLcen = �(Lcen | M) f (Lcen, M) dLcen. (23)

Since the CLF only gives the average number of galaxies with

luminosities in the range L ± dL/2 in a halo of mass M, there

are many different ways in which one can assign luminosities to

the Ni galaxies of halo i and yet be consistent with the CLF. The

simplest approach would be to simply draw Ni luminosities from

�(L | M) and to associate Lcen with the luminosity of the brightest

galaxy. We refer to this luminosity sampling as ‘random’, which

results in the broadest P(Lcen | M) possible, at least when we ad-

here to the assumption that the central galaxy is the brightest halo

galaxy.

Alternatively, one could use a more constrained approach, and,

for instance, assume that the luminosity of the brightest (and hence

central) galaxy is always larger than L1, defined by∫ ∞

L1

�(L | M) dL ≡ 1. (24)

Although L1 = L1(M) is defined such that a halo has on average

one galaxy with L � L1, demanding that Lcen � L1 is equivalent

to assuming that galaxy formation is somewhat deterministic and

that the number of galaxies with L � L1(M) is always exactly 1.

Hereafter we will refer to this sampling method as ‘deterministic’,

which yields the narrowest P(Lcen | M) possible.

In the case of ‘deterministic’ drawing, one obviously has that

f (Lcen, M) =
{

1 if Lcen � L1(M)

0 if Lcen < L1(M)
(25)
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so that the expectation value for the luminosity of a central galaxy

in a halo of mass M is simply given by

〈Lcen〉M =
∫ ∞

L1

�(L | M) L dL = �̃∗ L̃∗ �(α̃ + 2, L1/L̃∗). (26)

In the case of ‘random’ drawing, one obtains that

f (Lcen, M) =
(

1 − ζ

〈N 〉M

)
exp(−ζ ) (27)

with

ζ = 〈N 〉M − 1

〈N 〉M

∫ ∞

Lcen

�(L | M)dL (28)

(see appendix B in van den Bosch et al. 2004 for a derivation), and

the expectation value for Lcen has to be computed numerically.

Unless specifically stated otherwise, in what follows we adopt the

‘deterministic’ sampling strategy because it allows various statistics

of centrals and satellites to be computed analytically from the CLF.

Most of the results do not significantly depend on this particular

choice. Whenever the detailed form of f (Lcen, M) is important, we

will present the results for both the ‘deterministic’ and the ‘random’

samplings.

2.5 Parameter fitting

The CLF, as specified above, has a total of eight free parameters:

two characteristic masses M1 and M2, four parameters that describe

the various mass dependences γ 1, γ 2, γ 3 and η, a normalization

for the mass-to-light ratio, (M/L)0, and a normalization of the faint-

end slope, α15. The data that we use to constrain the CLF consist

of the 2dFGRS luminosity function of Madgwick et al. (2002) and

the galaxy–galaxy correlation lengths as function of luminosity ob-

tained from the 2dFGRS by Norberg et al. (2002).

The LF of Madgwick et al. (2002) has been determined using

the 2dFGRS data over the redshift range 0.01 � z � 0.15, which

we model using equations (4) and (5), with zmin = 0.01 and zmax =
MIN [0.15, zlim(L)]. Here zlim(L) is the redshift at which the apparent

magnitude of a galaxy of luminosity L is equal to the flux limit of

the 2dFGRS, bJ = 19.3 (Colless et al. 2001).

Norberg et al. (2002) defined a set of eight volume-limited sam-

ples, each defined by two luminosity limits, Lmin and Lmax, and two

redshift limits, zmin and zmax. For each of these samples, they deter-

mined the correlation length, r0, defined by ξ gg(r0) = 1. We model

this using equation (13) with

bg,eff =
∫ ∞

0
〈N 〉M bh,eff(M) neff(M) dM∫ ∞

0
〈N 〉M neff(M) dM

, (29)

where 〈N〉M is given by (1), but with L1 and L2 replaced by the

luminosity limits Lmin and Lmax of the volume-limited sample under

consideration.

To determine the likelihood function of our free parameters, we

use the Monte Carlo Markov Chain (hereafter MCMC) technique

(see e.g. Gamerman 1997). Each element of the chain is a model,

consisting of eight parameters. At any point in the chain, we generate

a new trial model by drawing the shifts in the eight free parameters

from eight independent Gaussian distributions, centred on the cur-

rent value of the corresponding model parameter. The probability

of accepting the trial model is

Paccept =
{

1.0 if χ2
new < χ2

old

exp
[ − (

χ 2
new − χ 2

old

)
/2

]
if χ2

new � χ 2
old

. (30)

Here χ2 = χ2
� + χ 2

r0
with

χ 2
� =

N�∑
i=1

[
�(Li ) − �̂(Li )

��̂(Li )

]2

, (31)

and

χ 2
r0

=
Nr∑

i=1

[
ξgg(r0,i ) − 1

�ξ̂gg(r0,i )

]2

, (32)

where ·̂ indicates an observed quantity, and N� = 35 and Nr = 8

are the number of data points for the LF and the correlation lengths,

respectively.1 Note that the correlation lengths for different lumi-

nosity ranges are not independent. Although the level of covariance

is likely to be small, since Norberg et al. (2002) used volume-limited

samples, we caution that these χ2 values should only be regarded

as estimates

2.6 The model

Using the method described above, we construct two chains con-

sisting of 20 million models each, one for the WMAP1 cosmology

and another for the WMAP3 cosmology. Each chain is thinned by

a factor of 104 to remove the correlations between neighbouring

models (see van den Bosch et al. 2005a, for details). The end results

are two MCMCs consisting of 2000 independent models each that

properly sample the full posterior distributions.

Fig. 2 shows that the model based on the WMAP3 cosmology

accurately fits the galaxy LF and the galaxy correlation lengths as

function of luminosity. The WMAP1 cosmology, however, yields

an equally good fit to the data (not shown here, but see fig. 3 in

van den Bosch et al. 2005a). The fact that both cosmologies allow

an equally good fit to these data, despite the large differences in

halo mass function and halo bias, illustrates that �(L) and r0(L)

alone allow a fair amount of freedom in cosmological parameters

(cf. van den Bosch et al. 2003b). However, as we will see below, the

WMAP1 and WMAP3 cosmologies predict significantly different

mass-to-light ratios.

Fig. 3 plots the posterior distributions of the CLF parameters for

both the WMAP1 (red, unshaded histograms) and the WMAP3 (blue

shaded histograms) MCMCs. The median and 68 per cent confi-

dence intervals of these distributions are listed in Table 2. A com-

parison of the WMAP1 results presented here with those presented

in van den Bosch et al. (2005a) shows small differences (all within

the 68 per cent confidence levels). These owe to the fact that (i) we

use a new model for the halo bias, including its scale dependence,

(ii) we properly model the data over its light-cone and (iii) we no

longer impose the constraint that the mass-to-light ratio is constant

for haloes with M � 1014 h−1 M�. Of these, (i) is by far the most

important.

Comparing the WMAP1 and WMAP3 results, one notes that sev-

eral parameters, notably M2, α15, η, γ 2 and γ 3, have virtually the

same likelihood distributions for both cosmologies. In the case of

(M/L)cl, (M/L)0 and M1, however, the distributions for the WMAP1

and WMAP3 cosmologies are clearly offset from each other. As we

show below in more detail, this mainly reflects the fact that the mass-

to-light ratios predicted for the WMAP3 cosmology are significantly

lower than those for the WMAP1 cosmology.

1 Note that, by definition, ξ̂gg(r0,i ) = 1.
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Figure 2. The data used to constrain the models (symbols plus errorbars), and the 68 and 95 per cent confidence limits from the WMAP3 MCMC. The

left-hand panel shows the galaxy luminosity function with the 2dFGRS data from Madgwick et al. (2002), while the right-hand panel shows the values of the

galaxy–galaxy correlation function at the correlation lengths of the magnitude bins used by Norberg et al. (2002). For the data, these are unity by definition.

Note that the model accurately fits the data.

Figure 3. Constraints on the nine CLF parameters obtained from our MCMCs. The shaded (blue) and non-shaded (red) histograms correspond to the WMAP3

and WMAP1 cosmologies, respectively. The median and 68 per cent confidence intervals of the distributions are listed in Table 2. Masses and mass-to-light

ratios are in units of h−1 M� and h (M/L)�, respectively.

3 R E S U LT S

In what follows we use the MCMC presented above to make a

number of predictions regarding the galaxy–dark matter connection.

Where possible, we will compare these predictions to the results

obtained from an analysis of a large catalogue of galaxy groups

selected from the 2dFGRS using the halo-based galaxy group finder

of YMBJ. A short description of this group catalogue is presented

in Appendix A.

3.1 Mass-to-light ratios

As discussed above, the CLF allows one to compute the average

relation between light and mass in the Universe. We present these

results in terms of the average mass-to-light ratio as function of halo

mass, 〈M/L18〉M . Here M is defined as the mass within a radius inside

of which the average density is 180 times the background density,

which can be converted into the virial mass Mvir using equation (15).

The quantity L18 is the total luminosity in the photometric bJ band
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Table 2. CLF parameters.

ID (M/L)cl (M/L)0 log M1 log M2 γ 1 γ 2 γ 3 α15 η

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

WMAP1 432+92
−69 129+26

−19 10.88+0.29
−0.22 12.11+0.23

−0.26 2.32+1.16
−0.83 0.27+0.07

−0.06 0.69+0.05
−0.05 −1.20+0.26

−0.26 −0.25+0.09
−0.11

WMAP3 350+94
−67 89+18

−13 10.70+0.25
−0.19 12.02+0.25

−0.24 2.96+1.71
−1.05 0.27+0.07

−0.06 0.70+0.06
−0.06 −1.18+0.31

−0.32 −0.21+0.12
−0.12

WMAP1a 434 128 10.90 12.11 2.36 0.27 0.72 −1.08 −0.19

WMAP3a 363 89 10.69 12.00 2.74 0.28 0.68 −1.25 −0.24

WMAP3b 220 124 10.72 12.33 3.49 0.17 0.66 −1.55 −0.28

WMAP3c 543 74 10.57 11.99 3.29 0.34 0.67 −1.38 −0.27

WMAP3d 214 132 10.62 12.60 6.83 0.15 0.60 −1.88 −0.35

Notes. Parameters of CLF models. Column (1) lists the ID by which we refer to each CLF in the text. Columns (2)–(10) list the CLF parameters obtained from

the MCMCs. The upper two entries indicate the median and 68 per cent confidence levels, the middle two rows list the parameters of the best-fitting models and

the lower two rows list the parameters of three extreme models discussed in Section 5. Masses and mass-to-light ratios are in h−1 M� and h (M/L)�, respectively.

Figure 4. Posterior constraints on a number of quantities computed from the WMAP3 MCMC. The contours show the 68 and 95 per cent confidence limits

from the marginalized distributions. Upper left-hand panel: the average ratio between M and L18 as function of halo mass. The (red) solid dots indicate the

results from our 2dFGRS group catalogue (see Table A1), while the thick (black) line indicates the results from the 2PIGG group catalogue of Eke et al. (2004).

Upper right-hand panel: the average relation between Lcen and M. Again, the (red) solid dots indicate the results obtained from our 2dFGRS group catalogue.

Lower left-hand panel: the faint-end slope of the CLF, α̃, as function of halo mass M. Solid dots (red) and squares (black) correspond to the results obtained

from our 2dFGRS group catalogue and the 2PIGG catalogue, respectively. Lower right-hand panel: the average satellite fraction as function of luminosity.

Solid circles (red) and triangles (blue) indicate the satellite fractions of early- and late-type galaxies, respectively, obtained by Mandelbaum et al. (2006) from

galaxy–galaxy lensing in the SDSS. The thick dashed line corresponds to the results obtained by TNWW from a HOD analysis of the 2dFGRS, and the two

thick crosses are the satellite fractions (and their 68 per cent confidence limits) obtained by Cooray (2006) from a CLF analysis of the SDSS

of all galaxies brighter than MbJ
− 5 log h = −18.0, which is easy

to obtain from the CLF.

The upper panels of Fig. 4 show the 68 and 95 per cent confi-

dence limits on 〈M/L18〉M and Lcen(M) as obtained from our WMAP3

MCMC discussed above. The particular shape of 〈M/L18〉M holds

important information regarding galaxy formation. For example,

the pronounced minimum at M � 2 × 1011 h−1 M� indicates the

mass scale at which galaxy formation is most efficient. At lower

masses 〈M/L18〉M increases dramatically, indicating that galaxy for-

mation is unable to make galaxies with MbJ
− 5 log h � −18.0 in

such low-mass haloes. At the high-mass end, the mass-to-light ratio

also increases, though less rapidly, indicating that some processes,

possibly including active galactic nucleus feedback, cause galaxy

formation to also become relatively inefficient in massive haloes.
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The solid circles with errorbars correspond to the results obtained

from our 2dFGRS group catalogue (Table A1), and are in excellent

agreement with the CLF predictions. It is extremely reassuring that

two completely different approaches yield average mass-to-light ra-

tios that are in such good agreement. Note that the errorbars indicate

the observed scatter, not the error on the mean,2 and that the group

masses are cosmology dependent (see Appendix A for details).

According to our parametrization, at the high-mass end

〈M/L18〉M ∝ Mγ2 . We obtain that γ 2 = 0.27+0.07
−0.06 (see Table 2), in

good agreement with our 2dFGRS galaxy group results and with a

wide range of additional studies (see Section 2.3). The solid (black)

line, however, indicates the mass-to-light ratios obtained by Eke

et al. (2004) from their 2dFGRS group catalogue called 2PIGG

(2dFRGS Percolation-Inferred Galaxy Group). Although the agree-

ment with our CLF predictions and with the results from our 2dF-

GRS group catalogue is good for M � 1014 h−1 M�, the 2PIGG

catalogue yields that γ 2 → 0 for M � 1014 h−1 M�. Similar re-

sults were obtained by Bahcall et al. (1995, 2000) and Sanderson

& Ponman (2003). To test whether the clustering data itself can dis-

criminate between these results, we have constructed a CLF MCMC

in which we set 〈M/L〉 = (M/L)cl for M � 1014 h−1 M�. The result-

ing model can fit the observed �(L) and r0(L) equally well as the

model presented here, indicating that the clustering data alone can-

not meaningfully constrain the slope of the relation between mass

and light on the scale of clusters. The simple fact that two group cat-

alogues constructed from the same data set (2dFGRS) yield predic-

tions that are very different, accentuates the need for more thorough

investigations.

A comparison with fig. 3 in van den Bosch et al. (2005a) shows

that the mass-to-light ratios predicted by the CLF formalism are sig-

nificantly lower in the WMAP3 cosmology, compared to those in the

WMAP1 cosmology. This difference is most pronounced near the

minimum (M � 3 × 1011 h−1 M�, where the WMAP1 cosmology

predicts mass-to-light ratios that are ∼45 per cent higher. At the mas-

sive end the difference is less pronounced, but at M = 1014 h−1 M�
the WMAP1 mass-to-light ratios are still ∼25 per cent higher than

those for the WMAP3 cosmology. The reason for this change is a

rather complicated mix of effects. First of all, in the WMAP3 cos-

mology there are much fewer massive haloes. Secondly, changing

the cosmology from WMAP1 to WMAP3 decreases the dark mat-

ter correlation length (see Table 1). Consequently, galaxies have

to become more strongly biased in order to match their observed

correlation lengths. To some extent, this is automatically achieved

by the fact that the halo bias is larger in the WMAP3 cosmology

(cf. Fig. 1). However, since the strength of this effect is strongly de-

pendent on halo mass, it is difficult to make intuitive predictions. Our

analysis shows that all these effects conspire to cause the average

mass-to-light ratios to decrease on all mass scales.

The fact that the average mass-to-light ratios are cosmology de-

pendent is of great importance. As we have shown in van den Bosch

et al. (2003b, hereafter BMY03), it allows us to put tight constraints

on cosmological parameters, in particular on �m and σ 8. In princi-

ple, there is a wide range of cosmologies that allow one to accurately

fit both �(L) and r0(L). Changing the cosmology typically implies

a change in the halo bias and in the overall clustering strength of the

dark matter. In order to maintain a good fit to the observed r0(L),

one has to redistribute galaxies over haloes of different masses in

order to counterbalance the changes in bh(M) and ξ dm(r). As long

2 Since the halo masses are estimated from the group luminosities, this scatter

is a lower limit on the true scatter.

as these changes are not too large, one can always find a character-

istic halo mass that has the right bias so that r0(L) is consistent with

the data. However, all these different models will predict different

mass-to-light ratios 〈M/L〉M , simply because they require different

halo occupation statistics. Therefore, any constraints on the average

mass-to-light ratios of dark matter haloes, on any mass scale, will

dramatically tighten the constraints on cosmological parameters.

One such constraint comes from galaxy clusters. Numerous stud-

ies, based on different techniques, have measured the mass-to-light

ratios of clusters of galaxies (e.g. Carlberg et al. 1996; Bahcall et al.

2000; Lin et al. 2004; Popesso et al. 2005). As shown in BMY03,

all these measurements are in good agreement with each other and

suggest that 〈Mvir/LB〉cl = (350 ± 70) h (M/L)�. Using this as

a constraint on the CLF models puts tight constraints on the cos-

mological parameters. In fact, combining the CLF analysis with

the first year WMAP results, BMY03 obtained that �m = 0.25+0.10
−0.07

and σ 8 = 0.78 ± 0.12 (both 95 per cent CL), in excellent agree-

ment with the 3-yr results from the WMAP mission (Spergel et al.

2006). The main problem with the WMAP1 cosmology is that it

predicts mass-to-light ratios for clusters that are too large (see also

Tinker et al. 2005; Vale & Ostriker 2006). The good agreement, both

among these different studies and with the latest CMB constraints,

demonstrates the strength and reliability of the CLF formalism (or

equivalent techniques), especially when combined with constraints

on mass-to-light ratios. It indicates that halo occupation modelling

has matured to the point where it can be used to obtain tight and

reliable constraints on cosmological parameters (see also Zheng &

Weinberg 2005).

3.2 Faint end slope of CLF

The lower left-hand panel of Fig. 4 shows that our CLF model pre-

dicts that the faint-end slope of the CLF, α̃, decreases with increasing

halo mass. At around the cluster scale the models favour fairly steep

faint-end slopes with α̃ � −1.2 ± 0.3 (68 per cent CL), in good

agreement with independent studies of the luminosity functions

of individual clusters (e.g. Sandage, Bingelli & Tammann 1985;

Beijersbergen et al. 2002; Trentham & Hodgkin 2002; Trentham &

Tully 2002). Note, however, that since the CLF reflects the average
luminosity function for haloes of a given mass, it is not necessarily a

good description of the luminosity functions in individual systems.

A more meaningful comparison is therefore with the CLFs that one

can obtain directly from galaxy group catalogues by combining all

groups in a relatively narrow mass bin.

The solid squares indicate the faint-end slope of the CLF thus

obtained by Eke et al. (2004) from the 2PIGG group catalogue (see

also Robotham et al. 2006), while the (red) solid dots correspond to

the results obtained from our 2dFGRS group catalogue (see Yang

et al. 2005b). Both results are in reasonable agreement with each

other and with the confidence limits obtained from our CLF analysis

(though the latter are not very strict). Note that our results only extent

to M � 1014 h−1 M�; in order to obtain a sufficiently large number of

massive groups, one needs to probe out to relatively high redshifts.

However, because of the flux limit of the 2dFGRS we cannot probe

the CLF of these groups to sufficiently low luminosities to be able

to extract a reliable measure of the faint-end slope.

3.3 Satellite fractions

The satellite fraction as function of luminosity, f sat(L), is an impor-

tant quantity for a proper interpretation of galaxy–galaxy lensing

measurements (Guzik & Seljak 2002; Mandelbaum et al. 2006;
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Figure 5. The luminosity-gap statistic: the (blue) shaded histograms indicate the distribution of log[L2/L1] obtained from our 2dFGRS group catalogue for

four different bins in halo (group) mass, as indicated (all masses are in h−1 M�). Here Li is the luminosity of the ith brightest galaxy in a given group (or halo).

The dashed (green) histograms show the results obtained from our best-fitting CLF model, when using either the ‘deterministic’ (upper panels) or ‘random’

(lower panels) sampling strategy. The solid (red) histograms show the results obtained from mock group catalogues constructed from these CLF models. These

can be compared directly to the 2dFGRS results. Note that the overall agreement is very satisfactory, both for the ‘deterministic’ and for the ‘random’ sampling

strategy. The vertical dashed lines correspond to log [L2/L1] = −0.8 and mark the point where the second brightest galaxy is exactly two magnitudes fainter

than the brightest galaxy. Groups to the left of this line are sometimes referred to as ‘fossil groups’.

Yang et al. 2006) and for understanding PVDs (Slosar, Seljak &

Tasitsiomi 2006; see also Section 5). Therefore, it is useful to check

what our CLF models predict in terms of f sat(L).

A satellite galaxy most likely resides in a more massive halo than

a central galaxy of the same luminosity. Since halo bias depends

on halo mass, the large-scale bias of galaxies of a given luminosity

depends strongly on what fraction of them are satellites. Conse-

quently, the observed clustering strength as function of luminosity

can put strong constraints on fsat(L). In the ‘deterministic’ case (see

Section 2.4), the satellite fraction as function of luminosity is given

by

fsat(L) = 1

�(L)

∫ ∞

Mone

�(L | M) n(M) dM (33)

with Mone defined according to L1(Mone) = L. In words, Mone is the

mass scale at which one has exactly one galaxy brighter than L,

which is easily computed from equation (24) using a root finder.

The lower right-hand panel of Fig. 4 shows the 68 and 95 per cent

confidence levels on fsat(L) computed from our CLF MCMC. The

satellite fraction decreases with increasing luminosity, from 32 ±
6 per cent at MbJ

− 5 log h = −17 to 11 ± 4 per cent at MbJ
−

5 log h = −21 (both 68 per cent CL). In the WMAP1 cosmology,

the satellite fractions are about +5 per cent higher, which is a small

(but systematic) difference compared to the model uncertainties for

a given cosmology.

For comparison, we overplot the results from three different stud-

ies. The dashed line shows the satellite fractions corresponding to

the fiducial HOD model of Tinker et al. (2006b, hereafter TNWW).

This model is constrained by the luminosity dependence of the clus-

tering strength in the 2dFGRS. The two crosses indicate the satellite

fractions inferred by Cooray (2006) from a CLF analysis of the Sloan

Digital Sky Survey (hereafter SDSS), with vertical errorbars indi-

cating the 68 per cent confidence levels. Finally, the solid circles and

triangles with vertical errorbars (68 per cent CL) indicate the satel-

lite fractions of early- and late-type galaxies, respectively, inferred

by Mandelbaum et al. (2006) from a galaxy–galaxy lensing analysis

of the SDSS.3 Remarkably, all these results are in good agreement

with each other and with our CLF constraints.

3.4 Fossil groups and the luminosity-gap statistic

Another useful statistic is the ratio L2/L1 of the luminosities of the

second brightest and brightest galaxies in a given halo. As discussed

in D’Onghia et al. (2005) and Milosavljević et al. (2006), this statis-

tic quantifies the dynamical age of a system of galaxies: haloes with

L2/L1 close to unity must be relatively young, as dynamical friction

will cause multiple luminous galaxies in the same halo to merge on

a relatively short time-scale.

In Fig. 5, we compare this ‘luminosity-gap’ statistic obtained

from our 2dFGRS group catalogue (shaded histograms) to results

obtained from our CLF. To that extent we populate the dark matter

haloes in a 300 h−1 Mpc cosmological simulation box (see Appendix

B) with galaxies according to our best-fitting CLF model (called

WMAP3a in Table 2) using both the ‘deterministic’ and the ‘ran-

dom’ formalisms described in Section 2.4. The results are shown

as the dashed (green) histograms in the upper and lower panels, re-

spectively. Both models clearly predict that the average luminosity

gap increases with decreasing halo mass, in qualitative agreement

with the data. While the ‘deterministic’ model predicts that there is

a deficit of low-mass haloes with L2/L1 ∼ 1, the ‘random’ model

always predicts distributions of L2/L1 that peak at unity. Especially

for haloes with 12 < log [M/(h−1 M�)] � 13, the latter seems to be

in better agreement with the data. However, the comparison is not

entirely fair. After all, the data have been obtained from a group cat-

alogue, which suffers from interlopers, incompleteness and errors

in halo mass.

3 For the results of Mandelbaum et al. (2006) and Cooray (2006), we have

converted the SDSS r-band luminosities to the bJ band using the simplifying

assumption that the luminosity ratio L/L∗ is independent of the photometric

band.
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We therefore use the populated simulation box to construct a

MGRS (as described in detail in Appendix B) to which we apply

the group finder of YMBJ. The solid (red) histograms in Fig. 5 show

the luminosity-gap statistic obtained from these mock group cata-

logues. Overall, the agreement between the model and the data is

remarkably good, indicating that our CLF model predicts realistic

values of L2/L1. Somewhat unfortunately, the differences between

the ‘deterministic’ and ‘random’ models are now much suppressed,

so that it is no longer possible to clearly discriminate between these

two models. Note that the mock group catalogue yields a distribution

of log [L2/L1] in the lowest halo mass bin which is very different

from the true underlying distributions (dashed histograms), indi-

cating that these low-mass haloes suffer quite substantially from

interlopers, incompleteness effects and errors in halo mass. For the

more massive haloes, however, the agreement between the true dis-

tributions and those obtained from the mock group catalogue is very

satisfactory.

Systems with a relatively large luminosity gap, which most

likely owes to the fact that the brightest galaxies in the halo

have merged, are often termed as ‘fossil groups’ and have re-

ceived a significant amount of attention in the recent literature

(see Vikhilin et al. 1999; Jones et al. 2003; D’Onghia et al.

2005; Milosavljević et al. 2006, and references therein). Follow-

ing Jones et al. (2003) and Milosavljević et al. (2006), we define

systems in which the second brightest galaxy is at least 2-mag

fainter than the brightest galaxy (i.e. log[L2/L1] � −0.8, indi-

cated as dotted vertical lines in Fig. 5) as ‘fossil’ systems. With

our 2dFGRS group catalogue, we are in a unique position to de-

termine the fraction of fossil groups from a large and complete

sample of optically selected galaxy groups. We obtain that the

fraction of fossil systems increases with decreasing halo mass

from 3.6 per cent for groups with 14 < log[M/(h−1 M�)] �
15 to 6.5 per cent for groups with 13 < log[M/(h−1 M�)] � 14

to 13.4 per cent for groups with 12 < log[M/(h−1 M�)] � 13 (in

all three cases the Poissonian errors are less than 0.1 per cent). For

comparison, Jones et al. (2003) obtained an incidence rate of 8–

20 per cent for systems with an X-ray luminosity from diffuse,

hot gas of LX,bol � 2.5 × 1041 h−2 erg s−1. Although this is rela-

tively high compared to the fossil fractions in our 2dFGRS group

catalogue, the latter have not been X-ray selected which compli-

cates a straightforward comparison. In a recent paper, D’Onghia

et al. (2005) used detailed hydrodynamical simulations to pre-

dict the fraction of haloes with M ∼ 1014 h−1 M� that have

log[L2/L1] � −0.8. From a total of 12 simulated groups, they obtain

a fossil fraction of 33 ± 16 per cent. Although consistent with ours

at their 2σ level, the much lower fraction of fossil systems in our

2dFGRS group catalogue suggests a potential overmerging problem

in their simulations.

As a final note of caution, we emphasize that the CLF predic-

tions for the luminosity gap statistic are likely to be sensitive to the

assumed Schechter form. If alternative functional forms yield lu-

minosity gap statistics that are very different (after the construction

of a mock group catalogue), the 2dFGRS data presented here may

be useful to discriminate between different functional forms for the

CLF.

4 H A L O O C C U PAT I O N S TAT I S T I C S

In this section, we describe the link between the CLF and the more

often used HOD models. The latter aim at constraining the condi-

tional probability distribution P(N | M) that a halo of mass M con-

tains N galaxies. Here, and in what follows, whenever we talk about

the occupation numbers N, we mean the number of galaxies brighter

than a given luminosity limit Lmin. Most studies to date have only

focused on the first moment of P(N | M), which specifies the mean

occupation numbers as function of halo mass. The same informa-

tion can be extracted trivially from the CLF, for any Lmin, so that the

relation between P(N | M) and �(L | M) is given by

〈N 〉M =
∞∑

N=0

N P(N | M) =
∫ ∞

Lmin

�(L | M) dL. (34)

It is interesting to compare the shape of this 〈N〉M predicted by

the CLF, with the shape that is typically assumed in HOD mod-

els. Early HOD models often assumed that 〈N〉M follows a simple

power law (Jing, Mo & Börner 1998; Seljak 2000; Scoccimarro et al.

2001; Scranton 2002; Rozo, Dodelson & Frieman 2004; Collister

& Lahav 2005) or a broken power law (Berlind & Weinberg 2002;

Magliocchetti & Porciani 2003). More recently, it has become prac-

tice to adopt a somewhat more complicated form, motivated by

a separate treatment of central and satellite galaxies, i.e. 〈N〉M =
〈Ncen〉M + 〈Nsat〉M (e.g. Zehavi et al. 2004; Abazajian et al.

2005; Sefusatti & Scoccimarro 2005; Zheng et al. 2005; Tinker,

Weinberg & Zheng 2006a). In all these models 〈Nsat〉M is modelled

as a power law (sometimes with a break at small M), while 〈Ncen〉M

is considered to change from zero at low M to unity at high M, either

via a simple step function at a characteristic mass, or via a some-

what broader transition function. These functional forms are largely

motivated by the occupation statistics of dark matter subhaloes and

of galaxies in numerical simulations and semi-analytical models

(Kauffmann et al. 1999; Benson et al. 2000; Sheth & Diaferio 2001;

Berlind et al. 2003; Kravtsov et al. 2004; Zheng et al. 2005).

In the case of our CLF, no assumptions are made regarding the

functional forms of either 〈Ncen〉M or 〈Nsat〉M . In fact, we split the

Schechter-function CLF a posteriori in contributions from central

and satellite galaxies. Following the ‘deterministic’ method de-

scribed in Section 2.4, the occupation statistics of central and satel-

lite galaxies follow trivially from 〈N〉: if 〈N〉 � 1 then 〈Ncen〉 = 1

and 〈Nsat〉 = 〈N〉 − 1. On the other hand, if 〈N〉 < 1 then 〈Ncen〉 =
〈N〉 and 〈Nsat〉 = 0.

With one additional assumption, one can in fact derive the full

probability distribution P(N | M) from the CLF. Motivated by the

fact that dark matter subhaloes reveal Poissonian statistics (Kravtsov

et al. 2004), it has become standard to assume that the number of

satellite galaxies follows a Poisson distribution. If we follow this

assumption, which is also the standard procedure in HOD models,

we have that

P(N | M) =
{

P1(N | M) if M > Mone

P2(N | M) otherwise
. (35)

Here Mone is defined in Section 3.3,

P1(N | M) =
{

0 if N = 0

〈Nsat〉N−1

(N−1)!
exp [−〈Nsat〉] otherwise

, (36)

and

P2(N | M) =

⎧⎨⎩
1 − 〈Ncen〉 if N = 0

〈Ncen〉 if N = 1

0 otherwise

. (37)

For completeness, it should be stated that this works both ways,

and that in practice one can also compute the CLF from a given

HOD model. Constraints on 〈N〉M for a number of different Lmin

allows one to compute a CLF by simple differentiation (cf. Zehavi
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Figure 6. Occupation statistics of our best-fitting CLF model in the WMAP3 cosmology. The upper panels plot the average number of galaxies brighter than

a certain magnitude limit as function of halo mass. From left to right the upper panels show the occupation numbers for all galaxies, for central galaxies, and

for satellite galaxies. In each panel, the different lines correspond to different magnitude limits: from left to right, MbJ − 5 log h = −14, −15, . . . , −21. The

lower panels show the combined occupation numbers for three different magnitude limits, as indicated. These figures illustrate that the functional form of the

occupation numbers predicted by our CLF models are in qualitative agreement with HOD models, with numerical simulations, and with semi-analytical models

for galaxy formation, but with one important difference: the zero-to-unity transition of 〈Ncen〉M is significantly broader than that in most HOD models (see the

text for detailed discussion).

et al. 2005). However, the luminosity resolution of such a CLF is

restricted by the number of different magnitude limits for which a

HOD is constructed. For example, the HOD of Zehavi et al. (2005)

consists of nine magnitude limits. For each of these, 〈N〉M is fitted

with three free parameters. In the end, this yields a CLF with a

luminosity resolution of half a magnitude, which is described by a

total of 9 × 3 = 27 free parameters. For comparison, the CLF model

used here as (only) eight free parameters and has infinite luminosity

resolution.

4.1 Model predictions

The upper left-hand panel of Fig. 6 plots the average number of

galaxies brighter than a given magnitude limit as function of halo

mass. The magnitude limits are, from left to right, MbJ
− 5 log h =

−14, −15, . . . , −21. Results are only shown for the best-fitting

model from the WMAP3 MCMC, though the overall trends are

qualitatively the same for all other models, including those for the

WMAP1 cosmology. At bright magnitude limits, 〈N〉M is close to a

pure power law. At fainter magnitude limits, it starts to develop a

low-mass shoulder, which, at the faintest magnitude limits, evolves

into a separate peak. The results for MbJ
− 5 log h � −18, how-

ever, are not very reliable, as there are no clustering constraints for

these faint galaxies. The occupation numbers for these faint magni-

tude limits are merely ‘predictions’ that follow from our assumed

functional form for the CLF.

The upper middle and upper right-hand panels of Fig. 6 plot the

corresponding occupation statistics of central and satellite galax-

ies, respectively (see Section 2.4). The lower panels plot 〈N〉M , plus

the contributions from central (dotted lines) and satellite (dashed

lines) galaxies, for three magnitude limits, as indicated. Clearly,

the functional forms of these occupation numbers are in qualitative

agreement with the functional forms discussed above: 〈Ncen〉M tran-

sits from zero at low M to unity at large M, while 〈Nsat〉M is well

approximated by a power law at large M with an (exponential) trun-

cation at low M. However, a more detailed comparison shows that

the 〈N〉M of TNWW reveal more pronounced shoulders at 〈N〉M =
1 with a sharper truncation at low M. The sharpness of this zero-

to-unity transition is a measure for the scatter in the conditional

probability function P(M |Lcen), which is the topic of discussion in

Section 4.3

Finally, in Fig. 7 we compare the halo occupation numbers pre-

dicted from our CLF MCMC with those obtained from our 2dFGRS

group catalogue (cf. Table A1). Overall the agreement is satisfac-

tory, especially for brighter magnitude limits. The group catalogue

predicts a flattening of 〈N〉M at 〈N〉M � 1, in disagreement with our

CLF predictions. However, this is an artefact of the group finder:

one can detect ‘groups’ with N = 1, but not those with N = 0 (cf.

Yang et al. 2005b).

4.2 Power-law slopes

To make our predictions regarding the occupation numbers some-

what more quantitative, we use our WMAP3 MCMC to compute the

slope of 〈Nsat〉M at the high-mass end. Fig. 8 plots the 68 and 95

per cent confidence limits on γ ≡ d log 〈Nsat〉M/d log M measured

at 〈Nsat〉M = 3 as function of the magnitude limit. This shows that

there is a fairly large uncertainty on γ , especially for faint magni-

tude limits. In addition, it shows that the value of γ does not depend

strongly on the value of the magnitude limit used. The sudden dra-

matic increase of the confidence limits at MbJ
− 5 log h = −20

owes to the fact that for some of the CLF models in the MCMC

even the most massive haloes considered (M = 1016 h−1 M�) have

fewer than three satellites with MbJ
− 5 log h � −20, so that γ is

not defined.

The (red) solid dots correspond to the results obtained from our

2dFGRS group catalogue, also measured at Nsat = 3, and are in

good agreement with the CLF constraints. The (green) horizontal
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Figure 7. The contours show the 68 and 95 per cent confidence limits on the halo occupation numbers obtained from our WMAP3 MCMC. Results are

shown for three different magnitude limits, as indicated, and are compared to the results obtained from our 2dFGRS group catalogue (red, solid dots; see

Table A1).

Figure 8. The slope γ ≡ dlog 〈Nsat〉/dlog M, measured at 〈Nsat〉 = 3, as

function of the magnitude limit. Overplotted for comparison are the results

obtained from the 2dFGRS group catalogue of YMBJ, the results of TNWW

obtained from a HOD analysis of the 2dFGRS and the results obtained for

dark matter subhaloes by Kravtsov et al. (2004).

bar indicates the constraints on γ obtained by TNWW from a HOD

analysis of the 2dFGRS. Under the assumption that γ is inde-

pendent of the luminosity limit they obtained γ = 1.03 ± 0.03

(68 per cent CL). This value is consistent with our CLF predictions

at the 1–2σ level, but significantly higher than what we obtained

from our 2dFGRS group catalogue. The same applies to the (black)

solid squares, which indicate the slopes of the occupation statistics

of CDM subhaloes. These have been obtained by Kravtsov et al.

(2004) for five different number densities of CDM haloes in a large

numerical simulation. We have converted these number densities to

a bJ-band magnitude limit, using the 2dFGRS luminosity function

of Madgwick et al. (2002).

Finally, we emphasize that these comparisons have to be inter-

preted with some care. After all, our 〈Nsat〉M are not pure power

laws, neither for the CLF predictions, nor for the occupation statis-

tics obtained from the 2dFGRS group catalogue. Consequently, the

results depend somewhat on the value of Nsat at which the slope is

measured.

4.3 Scatter in the relation between Lcen and M

As mentioned above, the occupation statistics of TNWW seem to

predict significantly sharper zero-to-unity transitions for 〈Ncen〉M ,

which implies significantly less scatter in P(M | Lcen). The width

of this conditional probability distribution is interesting from the

perspective of galaxy formation, as it contains information regarding

the amount of stochasticity in galaxy formation. It is also important

for a proper interpretation of galaxy–galaxy lensing measurements

(Mandelbaum et al. 2005) and of the kinematics of satellite galaxies

(van den Bosch et al. 2004).

We can use the CLF to compute the variance in log M of haloes

that host a central galaxy of luminosity Lcen. This is given by

σ 2[log M] = M2

M0

−
(
M1

M0

)2

(38)

with

Mk =
∫ ∞

0

P(Lcen | M) [log M]k n(M) dM (39)

and with P(Lcen | M) given by equation (23). Here we have used that

P(M | Lcen)dM = P(Lcen | M)n(M)∫ ∞
0

P(Lcen | M)n(M)dM
dM, (40)

which follows from Bayes’ theorem.

Fig. 9 plots the 68 and 95 per cent confidence limits on σ log M (Lcen)

obtained from our WMAP3 MCMC using the ‘deterministic’

(upper panel) and ‘random’ (lower panel) P(Lcen | M). The CLF

model predicts a pronounced increase of σ log M with increasing Lcen.

This is consistent with Fig. 6, which clearly shows that the zero-to-

unity transition of 〈Ncen〉 becomes less sharp for brighter magnitude

limits. As expected, the scatter in P(M | Lcen) is higher in the ‘ran-

dom’ case compared to the ‘deterministic’ case, especially at the

faint end.

The dashed lines in Fig. 9 indicate σ log M (Lcen) for the B-band

CLF from Cooray (2006) computed using (38). Although Cooray

assumes a different functional form for the CLF, and uses a very

different technique to constrain the CLF, the agreement with our

results is remarkably good.

The (red) solid dots show the results obtained by TNWW from

a HOD analysis of the 2dFGRS. TNWW assumed that P(M | Lcen)

follows a lognormal distribution and used the projected correla-

tion functions for different magnitude bins in an attempt to con-

strain the width of this distribution as a function of Lcen. For

Lcen < 1010 h−2 L�, however, the data could not meaningfully

constrain the width of P(M | Lcen), and TNWW simply adopted a
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Figure 9. The contours show the 68 and 95 per cent confidence limits on the

standard deviation in log M as function of Lcen, as obtained from our WMAP3

MCMC. This quantity expresses the width of the conditional probability

distribution P(M | Lcen). Upper and lower panels show the results for the

‘deterministic’ and ‘random’ methods, respectively. For comparison, we also

show the results obtained by TNWW, from a HOD analysis of the 2dFGRS

(red, solid dots), and by Cooray (2006) from a CLF analysis (dashed line).

Note that both CLF studies predict a much broader P(M | Lcen) than the HOD

study of Tinker et al.

constant value for the width of the lognormal distribution. The red

dots in Fig. 9 show the σ log M obtained by substituting the lognor-

mal of TNWW in equations (38) and (39). Note that for Lcen >

1010 h−2 L�, the resulting σ log M increases strongly with increas-

ing Lcen. Although in qualitative agreement with our results and

those of Cooray (2006), the actual values for σ log M are much

smaller. Unfortunately, it is difficult to judge the significance of

this difference, as TNWW do not give any uncertainties on their

estimates.

Given the relevance of the amount of scatter in P(M | Lcen), for

example, for weak lensing, it is important to try to obtain more di-

rect constraints on σ log M . In More et al. (in preparation), we use

satellite kinematics to show that σ log M (Lcen) > 0.2 for Lcen > 3 ×
109 h−2 L�, which clearly rules out the relatively small scatter ob-

tained (and assumed) by TNWW. It is unclear at present why these

authors obtain a σ log M (Lcen) that is so much smaller. For example,

as shown in Zehavi et al. (2005), one can change the sharpness

of the zero-to-unity transition of 〈Ncen〉M and leave the fit to the

galaxy–galaxy correlation function largely intact.

5 PA I RW I S E V E L O C I T Y D I S P E R S I O N S

The peculiar velocities of galaxies are determined by the action

of the gravitational field, and are therefore directly related to the

matter distribution in the Universe. Consequently, the amplitude of

galaxy peculiar velocities can yield useful, additional information

regarding the universal relation between light and mass. One statistic

that is particularly useful in this respect is the PVD, σ 12(r), which

is a measure of the relative peculiar velocity of a pair of galaxies as

a function of their separation r. The PVDs can be obtained from the

data as described in Section 5.1 below.

In Yang et al. (2004), we used detailed MGRSs (see Appendix

B) constructed using our WMAP1 CLF in order to investigate what

these CLF models predict for the PVDs of 2dFGRS galaxies. A

comparison with the results of Hawkins et al. (2003) revealed that

our MGRS based on the best-fitting CLF dramatically overpredicts

the PVDs at scales of ∼1 h−1 Mpc by ∼350 km s−1. Since the PVD

is extremely sensitive to the few richest systems in the sample (i.e.

Mo, Jing & Börner 1993), one can lower the PVDs by lowering

the occupation numbers of massive haloes. Within the uncertainties

of the CLF parameters, we were able to find a model that could

reproduce the observed PVDs. However, that model predicts an

average mass-to-light ratio for clusters of ∼1000 h M�/L�, which

is much larger (by more than 7σ ) than the average mass-to-light ratio

obtained from other, independent measurements (see Section 3.1).

Rather than lowering the average number of galaxies per cluster,

one can also lower the PVDs by reducing the abundance of massive

haloes. This, however, implies a change of cosmology. In Yang et al.

(2004) we showed that a flat �CDM cosmology with �m = 0.3 and

σ 8 = 0.75 could accurately reproduce the observed PVDs with a

realistic mass-to-light ratio for clusters. In fact, we used this result to

argue against the WMAP1 cosmology and in favour of a cosmology

with a reduced σ 8 (see also van den Bosch et al. 2003b, 2005a and

YMBJ).

The PVDs of Hawkins et al. (2003) were obtained from a large

flux-limited sample. Although these already provide important con-

straints on the mass-to-light ratios of clusters (for a given cosmol-

ogy), one can obtain even tighter constraints on the universal rela-

tion between light and mass by measuring the PVDs as a function

of galaxy luminosity. Jing & Börner (2004, hereafter JB04) were

the first to present a PVD analysis for galaxies in different lumi-

nosity intervals. Using the 2dFGRS, they found that the PVD at a

scale of k = 1 h Mpc−1 has a minimum of ∼425 km s−1 for galaxies

with MbJ
− 5 log h ∼ −20.5. Fainter galaxies, with magnitudes in

the range [− 17, − 19], were found to have much higher PVDs of

∼700 km s−1, almost as high as those of the brightest galaxies in the

2dFGRS (see red, solid triangles in Fig. 10). This indicates that a

significant fraction of the fainter galaxies must be satellite galaxies

in massive haloes.

A qualitatively similar result has been obtained by Li et al. (2006,

hereafter L06) from an analysis of the SDSS. In their case, however,

σ 12(L) measured at k = 1 h Mpc−1 reveals a smaller dynamic range;

the minimum occurs at ∼500 km s−1, while the PVDs for the fainter

galaxies are �600 km s−1 (see blue, solid squares in Fig. 10).

Using one of the CLF models presented in Yang et al. (2003),

JB04 constructed a mock 2dFGRS which they analysed in exactly

the same way as the 2dFGRS data. Contrary to the data, the model

PVDs were found to increases monotonically from ∼400 km s−1 at

MbJ
− 5 log h = −17 to ∼750 km s−1 at MbJ

− 5 log h = −21. The

CLF model thus severely underpredicts the PVDs of faint galaxies,

and does not reveal the pronounced minimum near MbJ
− 5 log h ∼

−20.5. However, there is a considerable amount of freedom in the
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Figure 10. The PVD measured at k = 1 h Mpc−1 using the Fourier analysis described in Section 5.1 as function of the median magnitude of the volume-limited

sample used. Open circles in both panels indicate the results obtained in this paper from the 2dFGRS (see Table 3), with the errorbars indicating the cosmic

variance as obtained from eight MGRSs. In the left-hand panel, we compare these to the results obtained by JB04 (red, solid triangles) and L06 (blue, solid

squares) from similar analyses of the 2dFGRS and SDSS, respectively. We have converted the SDSS r-band magnitudes to bJ-band magnitudes assuming

bJ − r = 0.9 (see L06). In the right-hand panel, we compare our 2dFGRS results to those obtained from four different WMAP3 CLF models, as indicated (cf.

Table 2 and Fig. 11). For completeness, we have indicated the formal χ2 value for each of these models. See the text for detailed discussion.

CLF parameters. For example, as is evident from Figs 3 and 4, within

the 95 per cent confidence limits there is a wide range of cluster

mass-to-light ratios and satellite fractions that can fit both �(L) and

r0(L). Since the PVDs are extremely sensitive to these quantities

(e.g. Mo et al. 1993; Slosar et al. 2006; Tinker 2007), it is crucial that

one takes this model freedom into account when comparing model

and data. Here we will do so, analysing the luminosity dependence

of the PVDs for our new WMAP3 CLF.

5.1 The luminosity dependence of the PVDs in the 2dFGRS

We start by performing our own analysis of the luminosity depen-

dence of the PVDs in the 2dFGRS. First we select those galaxies in

the final release of the 2dFGRS that are located in the North Galac-

tic Pole (NGP) and South Galactic Pole (SGP) survey strips with a

redshift quality parameter Q � 3, with 0.01 � z � 0.20, and with a

redshift completeness �0.7. These are used to construct 10 volume-

limited samples (adopting bJ = 19.3 as the apparent magnitude limit

Table 3. Pairwise velocity dispersions.

Magn. Limits Median Magn. zmin zmax N σ 12(k = 1 h Mpc−1)

MbJ − 5 log h MbJ − 5 log h (km s−1)

〈−17.5, −16.5] −16.99 0.01 0.05 4892 507 ± 122

〈−18.0, −17.0] −17.48 0.01 0.06 8144 532 ± 82

〈−18.5, −17.5] −17.99 0.01 0.07 12525 592 ± 38

〈−19.0, −18.0] −18.49 0.01 0.09 24334 574 ± 52

〈−19.5, −18.5] −18.96 0.02 0.11 35461 527 ± 43

〈−20.0, −19.0] −19.43 0.02 0.13 41438 470 ± 48

〈−20.5, −19.5] −19.90 0.02 0.16 43600 451 ± 44

〈−21.0, −20.0] −20.36 0.04 0.20 36383 413 ± 28

〈−21.5, −20.5] −20.79 0.05 0.20 12853 694 ± 134

〈−22.0, −21.0] −21.24 0.06 0.20 2840 993 ± 289

Notes. Column (1) specifies the absolute magnitude limit for each volume-limited sample, while

the median magnitude is listed in Column (2). The minimum and maximum redshifts of each

sample are listed in Columns (3) and (4), respectively, and the total number of 2dFGRS galaxies

in each sample is listed in Column (5). Note that only galaxies with a redshift completeness

greater than 0.7 are selected. Finally, Column (6) lists the PVDs in the 2dFGRS measured at k =
1 h Mpc−1, plus the (cosmic variance) error determined from eight MGRSs.

of the 2dFGRS) whose magnitude and redshift limits are indicated

in Table 3.

Let rp and rπ be the pair separations perpendicular and parallel

to the line of sight, respectively. For each of our volume-limited

samples, we compute the 2PCF ξ (rp, rπ ), using the estimator intro-

duced by Hamilton (1993). Random samples are constructed from

our MGRSs (see Appendix B) by randomizing the coordinates of

all mock galaxies. We use this two-dimensional 2PCF to compute

the PVD from the galaxy power spectrum in redshift space, P(s)(k,

μ), which is approximately related to the power spectrum in real

space, P(k) according to

P (s)(k, μ) = P(k) (1 + βμ2)2 D[kμσ12(k)] (41)

(Peacock & Dodds 1994, Cole, Fisher & Weinberg 1995) with k
being the wavenumber and μ being the cosine of the angle between

the wavevector and the line of sight. The factor (1 + βμ2)2 accounts

for the compression due to infall, with β being the linear redshift-

distortion parameter, while D[kμσ 12(k)] is the damping function
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that accounts for the random motion of galaxies within dark matter

haloes. We follow JB04 and L06 and assume that this damping

function has a Lorentz form

D[kμσ12(k)] =
[

1 + 1

2
k2μ2σ 2

12(k)

]−1

, (42)

and compute the redshift space power spectrum for each volume-

limited sample in Table 3 by Fourier transforming the corresponding

2PCF:

P (s)(k, μ) = 2π

∫
drπ

∫
drp rp ξ (rp, rπ ) cos(kπrπ )

J0(kprp) W (rp, rπ ) (43)

(JB04). Here J0 is the zeroth-order Bessel function, kπ and kp are

the wavenumbers perpendicular and parallel to the line of sight, and

W (rp, rπ ) = exp

(
−r 2

p + r 2
π

2S2

)
(44)

is a Gaussian smoothing function (with smoothing scale S =
20 h−1 Mpc) which is used to suppress the impact of fluctuations

in ξ (rp, rπ ) at large separations (see JB04 for details). We com-

pute ξ (rp, rπ ) in equal logarithmic bins of rp (� ln rp = 0.23) and in

equal linear bins of rπ (�rπ = 1.0 h−1 Mpc). The rπ integral in equa-

tion (43) is performed over the interval −50 � rπ � 50 h−1 Mpc,

while we integrate rp from 0.1 to 50 h−1 Mpc.

Finally, we determine the real-space power spectrum P(k) and

the PVDs σ 12(k) by modelling the measured P(s) (k, μ) using equa-

tion (41) with β = 0.45. Detailed tests in JB04 and L06 have shown

that keeping β fixed at this value yields reliable results. The best-

fitting values for σ 12(k = 1 h Mpc−1) thus obtained are listed in

Table 3 and are shown in Fig. 10 as black, open circles. The error-

bars are obtained from eight WMAP1 mock redshift surveys (see

Yang et al. 2004 for details) and indicate the expected scatter due

to cosmic variance. We have simply assumed that the cosmic vari-

ance for the WMAP3 cosmology is the same as that for the WMAP1

cosmology. Although obviously a crude assumption, our ‘cosmic

variance errors’ are significantly larger than those of L06, which

have been obtained using bootstrapping. We therefore believe that

our errors are sufficiently conservative.

Comparison of these results with those of JB04 and L06, reveals

good mutual agreement at MbJ
− 5 log h � −19. For fainter galax-

ies, however, our analysis yields PVDs that are ∼150 km s−1 lower

than those of JB04, with the results of L06, which are based on

the SDSS, roughly in between. Since our analysis is identical to

that of JB04, these differences reflect the slightly different selec-

tion criteria. Whereas JB04 used flux-limited samples with 0.02 �
z � 0.25, we use volume-limited samples with the restrictions that

0.01 � z � 0.20. Another potential source of this difference is the

relative sensitivity to the exact scale at which the PVDs are mea-

sured. As can be seen from Fig. 7 in JB04, their σ 12(k) for galaxies

with −18.5 < MbJ
− 5 log h < −17.5 reveals a pronounced, sharp

peak of ∼725 km s−1 at k = 1 h Mpc−1. However, at slightly higher

or lower k, the PVDs are ∼550 km s−1 in much better agreement

with our results and those of L06.

5.2 Comparison with CLF models

In order to predict PVDs from our CLF, we construct detailed

MGRSs using the CLF and cosmological N-body simulations (dark

matter only). These MGRS are constructed to be directly compara-

ble to the 2dFGRS, as described in detail in Appendix B. We analyse

these MGRSs using exactly the same procedure (described above)

as used for the 2dFGRS data, so that the model-data comparison is

as fair as possible.

The solid (red) line in the right-hand panel of Fig. 10 indicates the

PVDs obtained from the MGRS constructed from the best-fitting

CLF (called WMAP3a in Table 2). For MbJ
− 5 log h � −19.5,

this model predicts PVDs that are in reasonable agreement with

the data. For fainter samples, however, the PVDs are clearly too

low compared to the 2dFGRS. This is in qualitative agreement with

JB04, even though our analysis is for the WMAP3 cosmology, while

that of JB04 was for a WMAP1 cosmology.

In order to probe the uncertainties on σ 12 due to the uncertainties

on the CLF parameters, ideally one would construct a MGRS for

each of the 2000 models in our MCMC. Unfortunately, the construc-

tion of MGRSs and their subsequent analysis is computationally too

expensive rendering this unpractical. Instead, we proceed as follows.

Since the mass-to-light ratio of clusters and the satellite fractions

are the two model aspects that most strongly impact on σ 12, we have

searched the MCMC for two models that more or less bracket the

95 per cent confidence limits of our CLF model. The parameters of

these models, called WMAP3b and WMAP3c, are listed in Table 2,

while Fig. 11 shows the mass-to-light ratios and satellite fractions

of these models.

The dashed (blue) and dotted (green) lines in Fig. 10 show

the PVDs of models WMAP3b and WMAP3c, respectively. Model

WMAP3b predicts significantly higher satellite fractions and lower

cluster mass-to-light ratios than the best-fitting model (WMAP3a).

Consequently, the PVDs for faint galaxies are much larger, bring-

ing them in much better agreement with the PVDs obtained from

the 2dFGRS. In order to quantify the comparison between different

models, we compute the formal χ 2 using the ‘cosmic variance’ er-

rorbars obtained from our eight mock redshift surveys. This yields

χ 2 values of 95.7 and 89.4 for models WMAP3a and WMAP3b,

respectively. Despite the clear improvement at the faint end, the

goodness-of-fit of model WMAP3b is only marginally better than

that for model WMAP3a. This owes almost entirely to the fact that

model WMAP3b severely overpredicts the PVD for galaxies with

MbJ
− 5 log h � −20.4: this single data point contributes 80.9 to

the total χ 2!

As expected, model WMAP3c predicts PVDs that are even lower

than those in the case of model WMAP3a, in clear disagreement with

the data (χ2 = 147.4). It does, however, accurately match the PVD

at MbJ
− 5 log h � −20.4. This suggests that perhaps a model with

a high fsat at the faint end, and a low fsat at the high end, could fit

the PVDs at all luminosities. Model WMAP3d, which we extracted

from our MCMC, meets these criteria (see Fig. 11), and indeed

yields PVDs that are in reasonable agreement with the data (χ2 =
31.8). It does dramatically underpredict the PVDs at the bright end,

but since the corresponding (cosmic variance) errors are huge, the

contribution to the total χ 2 is only modest.

Thus we conclude that, within the WMAP3 cosmology, one can

find halo occupation models that can provide a reasonable, simul-

taneous fit to the luminosity dependence of the clustering strength

and the luminosity dependence of the PVDs. However, this does
come at a price. The best-fitting model (WMAP3d) is an extreme

model within the MCMC; this is evident from both Table 2 and

Fig. 11, which show that model WMAP3d has model parameters,

mass-to-light ratios and satellite fractions that differ substantially

from the best-fitting model. Furthermore, this model still does not

fit the PVDs completely satisfactory. In particular, it does not re-

veal a pronounced minimum in σ 12(L), as observed. In fact, we

have tested a number of additional models from our MCMC with

similar f sat(L) as model WMAP3d, but none fair any better in this
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Figure 11. Some predictions of four models discussed in the text (lines) overplotted on the 68 and 95 per cent confidence limits from the marginalized

distributions of the WMAP3 MCMC. The left-hand panel shows the average mass-to-light ratio as function of halo mass. Contrary to Fig. 4, here we plot 〈M/L〉,
not 〉M/L18 〈, with 〈L〉 given by equation (2). The right-hand panel shows the satellite fraction as function of galaxy luminosity. Model WMAP3a corresponds

to the best-fitting model in the MCMC, while models WMAP3b and WMAP3c roughly outline the extrema of 〈M/L〉M and of f sat(L). Finally, model WMAP3d,

whose mass-to-light ratio is almost identical to that of WMAP3b, has an extremely strong gradient in f sat(L). As shown in Fig. 10, this is the model that best

fits the luminosity dependence of the PVDs.

respect. We have also tested models with a ‘random’, rather than

a ‘deterministic’ sampling of Lcen, but this does not have a signif-

icant impact on the PVDs. TNWW showed that their HOD model

was able to reproduce the observed shape of σ 12(L), but since they

adopted a WMAP1 cosmology, their PVDs were systematically too

high by ∼150 km s−1. Although we only tested a hand full of models

(selected in a strongly biased way), we therefore conclude that the

detailed luminosity dependence of the PVDs remains a challenge for

the halo occupation models. In the next section, we discuss possible

implications of these findings.

6 C O N C L U S I O N S

Using the CLF formalism and data from the 2dFGRS, we have

constrained the universal relation between light and mass. Using a

MCMC we probe the complete parameter space of our models, and

provide confidence limits on all derived quantities. With respect to

our previous CLF studies, we have made the following changes and

improvements.

(i) We have adopted a flat �CDM cosmology with parameters

advocated by the 3-yr data release from the WMAP mission.

(ii) We have modelled the 2dFGRS data on its light cone.

(iii) We have taken the scale dependence of the halo bias into

account.

(iv) We no longer impose that the mass-to-light ratios of haloes

with M � 1014 h−1 M� are constant.

The change in cosmology (lower �m, lower σ 8 and lower spectral

index) causes a reduction in the mass-to-light ratios of dark mat-

ter haloes ranging from ∼25 to ∼45 per cent, depending on the

mass scale. As anticipated, this removes an important problem with

previous CLF and HOD models which had a tendency to predict

mass-to-light ratios for clusters that were too high (van den Bosch

et al. 2003b,c; Yang et al. 2004; Tinker et al. 2005; Vale & Ostriker

2006).

Taking account of the light-cone modelling and the scale de-

pendence of the halo bias only has a mild impact on our results,

improving the accuracy of our models by ∼5–10 per cent. We

emphasize, though, that the impact of these effects can be much

larger when using data out to higher redshift, or when using clus-

tering data on smaller scales, compared to what we have used

here.

We have compared various predictions of our CLF model with

results obtained from our 2dFGRS group catalogue. We found excel-

lent agreement for the average mass-to-light ratios, the luminosities

of central galaxies as function of halo mass, the faint-end slope of

the CLF, the occupation numbers in various luminosity bins, and the

luminosity-gap statistic. The fact that these two completely different

methods yield results in such good agreement, and for such a wide

variety of statistics, is a major success for both the CLF formalism

and for the halo-based group finder of YMBJ. The CLF model also

predicts that the satellite fraction decreases with increasing lumi-

nosity, in excellent agreement with the HOD analyses of TNWW

and Cooray (2006), as well as with the constraints obtained by Man-

delbaum et al. (2006) from a galaxy–galaxy lensing analysis of the

SDSS.

One outstanding issue regarding the mass-to-light ratios regards

the actual slope of 〈M/L〉M at the massive end (M � 1014 h−1 M�).

While the group catalogue of YMBJ yields mass-to-light ratios that

continue to increase roughly as 〈M/L〉M ∝ Mγ with γ = 0.33 ± 0.05,

an alternative group catalogue by Eke et al. (2004), also based on

the 2dFGRS, predicts that γ → 0 at the massive end. Unfortunately,

the clustering data used to constrain the CLF cannot discriminate

between these different values for γ . Although recent, independent

studies seem to favour somewhat intermediate values of γ � 0.2 ±
0.08 (e.g. Popesso et al. 2005), the fact that two group catalogues

constructed from the same data set yield such wildly different results,

accentuates the need for more thorough investigations.

We also presented a detailed description of the link between

the CLF and the more often used HOD models. In particular, we

have shown how to compute the full halo-occupation distribution,

P(N | M), from the CLF for any range in luminosities. In addition,

we have compared the shape of 〈N〉M predicted by our CLF models

with that typically assumed in HOD models. Although they agree

qualitatively, the HOD models typically adopt a zero-to-unity tran-

sition for 〈N〉M which is much sharper than what we predict with

our CLF. This implies that the CLF predicts probability distributions

P(M | Lcen) that are much broader than what is typically assumed in

HOD models. The amount of scatter in P(M | Lcen) plays an impor-

tant role in the interpretation of weak lensing measurements and
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of satellite kinematics. In More et al. (in preparation), we present a

strict lower limit on σ log M , obtained from satellite kinematics, which

rules out values for σ log M lower than ∼0.2.

Finally, we have studied the luminosity dependence of the PVDs,

σ 12, of 2dFGRS galaxies. Using ten volume-limited samples, we ob-

tain that σ 12(L) reveals a local minimum at MbJ
− 5 log h � −20.4,

in good qualitative agreement with JB04 and L06. At the faint end,

however, we obtain PVDs that are ∼150 km s−1 lower than those of

JB04. Since we used exactly the same analysis technique as JB04,

these differences must reflect the different selection criteria. Using

detailed MGRSs, we compared these σ 12(L) with predictions from

our CLF models. In agreement with previous studies (e.g. Mo et al.

1993; Slosar et al. 2006; Tinker 2007), we find that the PVDs are

extremely sensitive to the satellite fractions, f sat(L), and to the (clus-

ter) mass-to-light ratios. This is good news since the clustering data

used to constrain the CLF leave relatively large uncertainties re-

garding these quantities. Simultaneously matching r0(L) and σ 12(L)

therefore allows us to strongly tighten the constraints on parameter

space. In particular, for the WMAP3 cosmology used here, we find

that σ 12(L) requires models with relatively low mass-to-light ratios

for clusters [〈M/L〉cl � 215 h (M/L)�] and with a satellite fraction

that decreases from ∼45 per cent at MbJ
− 5 log h = −18.5 to

∼10 per cent at MbJ
− 5 log h = −20.5.

In terms of the likelihood distributions obtained from our MCMC,

these values are typically �2σ away from the median, indicating that

our CLF model is not capable of accurately fitting r0(L) and σ 12(L)

simultaneously. In particular, we were unable to find a CLF model in

our MCMC that could reproduce the pronounced minimum inσ 12(L)

at MbJ
−5 log h � −20.4. This suggests either (i) that we are dealing

with the wrong cosmology, or (ii) that the CLF parametrization

used here is not sufficiently general. Although we certainly cannot

rule out this latter option, we believe that option (i) is the more

likely cause for this outstanding problem. This is motivated by some

of our previous results. In Yang et al. (2004) we used our CLF

formalism and the PVDs measured by Hawkins et al. (2003) to

argue against the WMAP1 cosmology and in favour of a cosmology

with �m � 0.3 and σ 8 � 0.75. The WMAP3 cosmology adopted

here has �m = 0.238 and σ 8 = 0.744. Lowering �m and/or σ 8

reduces the abundance of massive haloes, which in turn implies

that lower cluster mass-to-light ratios are needed in order to explain

the observed PVDs. The fact that the WMAP3 cosmology studied

here requires relatively low values for 〈M/L〉cl, while our WMAP1

studies required relatively high cluster mass-to-light ratios, therefore

suggests a cosmology with values for �m and/or σ 8 intermediate

between those of the WMAP1 and WMAP3 cosmologies. We leave

it for future studies to see whether indeed such a cosmology can

yield a CLF that can simultaneously match the r0(L) and σ 12(L)

with realistic model parameters. As a final note, however, we wish

to emphasize that the combined constraints from r0(L) and σ 12(L)

are extremely tight, thus offering great potential to constrain both

cosmological parameters and halo occupation statistics. The CLF

formalism presented here is ideally suited for such a task.
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A P P E N D I X A : T H E 2 dF G R S G RO U P
C ATA L O G U E

Throughout this paper, we compare various CLF predictions with

results obtained from our 2dFGRS group catalogue. The construc-

tion of this catalogue is based on a halo-based group finder, which

is described in YMBJ. This group finder is optimized to group to-

gether those galaxies that reside in the same dark matter halo, and

has been tested in great detail against MGRSs (YMBJ; Yang et al.

2005b; Weinmann et al. 2006a,b)

Contrary to most other studies, we do not determine the group

masses from the velocity dispersion of the group members. Instead,

we estimate the group masses from the group luminosity L18, de-

fined as the total luminosity of all group members brighter than

MbJ
− 5 log h = −18. Detailed tests have shown that this method

is significantly more accurate than using the velocity dispersion of

group members (see appendix B of Weinmann et al. 2006a). For

distant groups, in which not all galaxies above this magnitude limit

are brighter than the flux limit of the survey, we correct L18 for the

missing members using an empirical self-calibration based on the

groups that are sufficiently nearby (see YMBJ for details). Finally,

to convert from L18 to a halo mass M, we make the assumption that

there is a one-to-one relation between L18 and M. For each group

we determine the number density of all groups brighter (in terms of

L18) than the group in consideration, and we then use the halo mass

function for the WMAP3 cosmology to find the value of M for which

the more massive haloes have the same number density. Note that
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Table A1. Parameters of galaxy groups in 2dFGRS.

log M log 〈Lcen〉 log 〈L18〉 〈N18〉 〈N19〉 〈N20〉
(h−1 M�) (h−2 L�) (h−2 L�)

11.56 9.57 9.63 0.535 – –

11.88 9.77 9.86 1.238 1.015 –

12.20 10.02 10.13 1.416 1.203 0.032

12.50 10.19 10.33 1.879 1.441 0.914

12.79 10.32 10.53 2.715 1.904 1.004

13.06 10.41 10.69 3.795 2.603 1.385

13.31 10.47 10.85 5.311 3.722 1.845

13.55 10.53 11.00 8.580 5.258 2.282

13.77 10.58 11.15 14.43 7.492 2.947

13.96 10.62 11.28 21.55 10.74 3.801

14.14 10.67 11.41 28.65 13.95 5.094

14.30 10.75 11.52 43.72 19.87 5.903

14.44 10.80 11.62 70.00 24.22 8.323

14.58 10.85 11.69 73.01 28.08 6.852

14.69 – 11.77 112.5 25.12 10.08

14.80 – 11.82 – 47.65 7.219

this has the disadvantage that the group mass is cosmology depen-

dent. However, it can easily be converted to any other cosmology,

using the relation∫ ∞

M

n(M ′) dM ′ =
∫ ∞

M̃

ñ(M ′) dM ′. (A1)

Here M and n(M) are the mass and halo mass function in the WMAP3

cosmology, and M̃ and ñ(M) are the corresponding values in the

other cosmology. An obvious shortcoming of this method is that the

true relation between L18 and M contains some scatter, which thus

results in errors in the inferred group masses. However, detailed

tests with MGRSs have shown that this method nevertheless allows

for a very accurate recovery of average halo occupation statistics.

In particular, the group finder yields average halo occupation num-

bers and average mass-to-light ratios that are in excellent agree-

ment with the input values (Yang et al. 2005b; Weinmann et al.

2006b).

Application of this group finder to the 2dFGRS, yields a catalogue

consisting of 77 708 groups, which in total contain 104 912 galaxies.

Among these, 7251 are binaries, 2343 are triplets and 2502 are

systems with four members or more. The vast majority of the groups

(66 612 systems) in our catalogue, however, consist of only a single

member. Note that some faint galaxies are not assigned to any group,

because it is difficult to decide whether they are the satellite galaxies

of larger systems, or the central galaxies of small haloes. Table A1

lists a number of average properties of these groups, as function of

the assigned group mass. These properties have been used in this

paper for comparison with our CLF predictions.

Notes. Columns (1)–(3) list the group mass, the average lumi-

nosity of the central group galaxy and the average, total luminosity

of all group galaxies with MbJ
− 5 log h � −18. Columns (4)–

(6) list the average number of galaxies, per group, brighter than

MbJ
− 5 log h = −18, −19 and −20, respectively. Note that the

group masses are only valid for the WMAP3 cosmology used here.

However, it is straightforward to convert these numbers to any other

cosmology.

A P P E N D I X B : M O C K G A L A X Y R E D S H I F T
S U RV E Y S

We construct MGRSs by populating dark matter haloes with galaxies

of different luminosities. The distribution of dark matter haloes is

obtained from two large N-body simulations of N = 5123 dark matter

particles each. These simulations have been carried with PKDGRAV,

a tree code written by Joachim Stadel and Thomas Quinn (Stadel

2001). Each simulation evolves the distribution of the dark matter in

the WMAP3 �CDM cosmology (�m = 0.238, �� = 0.762, �b =
0.042, h = 0.73, σ 8 = 0.75, ns = 0.951). The initial conditions are

generated with the GRAFIC2 package (Bertschinger 2001), which also

computes the transfer function as described in Ma & Bertschinger

(1995). The two simulations have periodic boundary conditions and

box sizes of 100 and 300 h−1 Mpc, respectively. The particle masses

are 4.92 × 108 and 1.33 × 1010 h−1 M� for the small and large box

simulations, respectively. In what follows we refer to the simulations

with Lbox = 100 and 300 h−1 Mpc as L100 and L300, respectively.

We follow Yang et al. (2004) and replicate the L300 box on a 4 ×
4 × 4 grid. The central 2 × 2 × 2 boxes, are replaced by a stack

of 6 × 6 × 6 L100 boxes, and the virtual observer is placed at the

centre (see fig. 11 in Yang et al. 2004). This stacking geometry

circumvents incompleteness problems in the mock survey due to

insufficient mass resolution of the L300 simulations, and allows us

to reach the desired depth of zmax = 0.20 in all directions.

Dark matter haloes are identified using the standard FOF (friends-

of-friends) algorithm with a linking length of 0.2 times the mean

interparticle separation. Unbound haloes and haloes with less than

10 particles are removed from the sample. The resulting halo mass

functions are in excellent agreement with the analytical halo mass

function of Sheth et al. (2001). We populate the dark matter haloes

with galaxies of different luminosity using our CLF. Because of the

mass resolution of the simulations and because of the completeness

limit of the 2dFGRS, we adopt a minimum galaxy luminosity of

Lmin = 107 h−2 L�. The halo occupation statistics of these galaxies

follow from the CLF as described in Section 4. Luminosities are

drawn using either the ‘deterministic’ or the ‘random’ sampling

method described in Section 2.4, whereby we always assume that

the central galaxy is the brightest galaxy in its halo.

The positions and velocities of the galaxies with respect to the

halo centre of mass are drawn assuming that the brightest galaxy in

each halo resides at rest at the centre. The satellite galaxies follow a

number density distribution that is identical to that of the dark mat-

ter particles, and are assumed to be in isotropic equilibrium within

the dark matter potential. To construct MGRSs, we use the same

selection criteria and observational biases as in the 2dFGRS, mak-

ing detailed use of the survey masks provided by the 2dFGRS team

(Colless et al. 2001; Norberg et al. 2002). We also mimic fibre col-

lisions and image blending as described in detail in van den Bosch

et al. (2005c). The final MGRSs accurately match the clustering

properties, the apparent magnitude distribution and the redshift dis-

tribution of the 2dFGRS, and mimic all the various incompleteness

effects, allowing for a direct, one-to-one comparison with the true

2dFGRS.
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