767 research outputs found

    Density of Araucaria angustifolia wood from overstocked stand.

    Get PDF
    O objetivo do presente trabalho foi avaliar as variaçÔes radiais e longitudinais de massa especĂ­fica bĂĄsica da madeira em um plantio superestocado com 65 anos de Araucaria angustifolia. O plantio, localizado na Floresta Nacional de Açungui, Campo Largo, PR, foi desbastado entre 1970 e 1980, nĂŁo havendo registros de desbastes posteriores a essa data. Foram selecionadas trĂȘs ĂĄrvores para cada classe de diĂąmetro: 10-30 cm, 30-50 cm e 50-70 cm. Para a anĂĄlise longitudinal, foram seccionados discos em sete alturas (0, 20, 40, 60, 80 e 100% da altura comercial e a 1,3 m do solo), sendo removidas as cascas e retiradas duas cunhas opostas atĂ© a medula e cinco corpos de prova no sentido radial de cada disco. Em geral, na direção radial houve aumento da massa especĂ­fica. As mĂ©dias da massa especĂ­fica diferiram estatisticamente ao longo do fuste, com diminuição da massa especĂ­fica na direção longitudinal. No entanto, a massa especĂ­fica mĂ©dia a 60% da altura comercial foi maior do que a 40%, com redução a partir dessa altura em direção ao topo, indicando efeito da competição que ocorreu na ĂĄrea. A desuniformidade da madeira ao longo do fuste Ă© um indicativo dos efeitos negativos da falta de manejo na ĂĄrea

    Foreground influence on primordial non-Gaussianity estimates: needlet analysis of WMAP 5-year data

    Get PDF
    We constrain the amplitude of primordial non-Gaussianity in the CMB data taking into account the presence of foreground residuals in the maps. We generalise the needlet bispectrum estimator marginalizing over the amplitudes of thermal dust, free-free and synchrotron templates. We apply our procedure to WMAP 5 year data, finding fNL= 38\pm 47 (1 \sigma), while the analysis without marginalization provides fNL= 35\pm 42. Splitting the marginalization over each foreground separately, we found that the estimates of fNL are positively cross correlated of 17%, 12% with the dust and synchrotron respectively, while a negative cross correlation of about -10% is found for the free-free component.Comment: Submitted to MNRA

    Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background

    Full text link
    Since the first limit on the (local) primordial non-Gaussianity parameter, fNL, was obtained from COBE data in 2002, observations of the CMB have been playing a central role in constraining the amplitudes of various forms of non-Gaussianity in primordial fluctuations. The current 68% limit from the 7-year WMAP data is fNL=32+/-21, and the Planck satellite is expected to reduce the uncertainty by a factor of four in a few years from now. If fNL>>1 is found by Planck with high statistical significance, all single-field models of inflation would be ruled out. Moreover, if the Planck satellite finds fNL=30, then it would be able to test a broad class of multi-field models using the four-point function (trispectrum) test of tauNL>=(6fNL/5)^2. In this article, we review the methods (optimal estimator), results (WMAP 7-year), and challenges (secondary anisotropy, second-order effect, and foreground) of measuring primordial non-Gaussianity from the CMB data, present a science case for the trispectrum, and conclude with future prospects.Comment: 33 pages, 4 figures. Invited review, accepted for publication in the CQG special issue on nonlinear cosmological perturbations. (v2) References added. More clarifications are added to the second-order effect and the multi-field consistency relation, tauNL>=(6fNL/5)^2

    Hemispherical power asymmetry: parameter estimation from CMB WMAP5 data

    Full text link
    We reexamine the evidence of the hemispherical power asymmetry, detected in the CMB WMAP data using a new method. At first, we analyze the hemispherical variance ratios and compare these with simulated distributions. Secondly, working within a previously-proposed CMB bipolar modulation model, we constrain model parameters: the amplitude and the orientation of the modulation field as a function of various multipole bins. Finally, we select three ranges of multipoles leading to the most anomalous signals, and we process corresponding 100 Gaussian, random field (GRF) simulations, treated as observational data, to further test the statistical significance and robustness of the hemispherical power asymmetry. For our analysis we use the Internally-Linearly-Coadded (ILC) full sky map, and KQ75 cut-sky V channel, foregrounds reduced map of the WMAP five year data (V5). We constrain the modulation parameters using a generic maximum a posteriori method. In particular, we find differences in hemispherical power distribution, which when described in terms of a model with bipolar modulation field, exclude the field amplitude value of the isotropic model A=0 at confidence level of ~99.5% (~99.4%) in the multipole range l=[7,19] (l=[7,79]) in the V5 data, and at the confidence level ~99.9% in the multipole range l=[7,39] in the ILC5 data, with the best fit (modal PDF) values in these particular multipole ranges of A=0.21 (A=0.21) and A=0.15 respectively. However, we also point out that similar or larger significances (in terms of rejecting the isotropic model), and large best-fit modulation amplitudes are obtained in GRF simulations as well, which reduces the overall significance of the CMB power asymmetry down to only about 94% (95%) in the V5 data, in the range l=[7,19] (l=[7,79]).Comment: 24 pages, 10 figures; few typos corrected; published in JCA

    Constraining Primordial Non-Gaussianity with High-Redshift Probes

    Get PDF
    We present an analysis of the constraints on the amplitude of primordial non-Gaussianity of local type described by the dimensionless parameter fNLf_{\rm NL}. These constraints are set by the auto-correlation functions (ACFs) of two large scale structure probes, the radio sources from NRAO VLA Sky Survey (NVSS) and the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs), as well as by their cross-correlation functions (CCFs) with the cosmic microwave background (CMB) temperature map (Integrated Sachs-Wolfe effect). Several systematic effects that may affect the observational estimates of the ACFs and of the CCFs are investigated and conservatively accounted for. Our approach exploits the large-scale scale-dependence of the non-Gaussian halo bias. The derived constraints on {fNLf_{\rm NL}} coming from the NVSS CCF and from the QSO ACF and CCF are weaker than those previously obtained from the NVSS ACF, but still consistent with them. Finally, we obtain the constraints on fNL=53±25f_{\rm NL}=53\pm25 (1 σ1\,\sigma) and fNL=58±24f_{\rm NL}=58\pm24 (1 σ1\,\sigma) from NVSS data and SDSS DR6 QSO data, respectively.Comment: 16 pages, 8 figures, 1 table, Accepted for publication on JCA

    Avalanche amplification of a single exciton in a semiconductor nanowire

    Full text link
    Interfacing single photons and electrons is a crucial ingredient for sharing quantum information between remote solid-state qubits. Semiconductor nanowires offer the unique possibility to combine optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical read-out of an exciton qubit state. Here we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunneling into a nanowire avalanche photodiode. Due to the large amplification of both electrons and holes (> 10^4), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards single-shot electrical read-out and offers a new functionality for on-chip quantum information circuits

    Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    Get PDF
    We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine and Li in 2007 (DL). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density, the optical extinction Av, and the starlight intensity parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas. We compare the DL optical extinction Av for the diffuse interstellar medium with optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan digital sky survey. The DL Av estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit Av, and not only in the starlight intensity. To circumvent the model deficiency, we propose an empirical renormalization of the DL Av estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization also brings into agreement the DL Av estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey. The DL model and the QSOs data are used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&

    The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars

    Full text link
    We present radial-velocity measurements obtained in a programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD150706 and HD222155 in 16.1 and 10.9 yr at 6.7 (+4.0,-1.4) and 5.1(+0.6,-0.7) AU and to have minimum masses of 2.71 (+1.44,-0.66) and 1.90 (+0.67,-0.53) M_Jup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD154345b and HD89307b, and publish the first reliable orbit for HD24040b. This last companion has a minimum mass of 4.01 +/- 0.49 M_Jup orbiting its star in 10.0 yr at 4.92 +/- 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD24040 system. With a surrounding dust debris disk, HD150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. HD222155 is an inactive G2V star. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment, consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up to constrain the system parameters and for higher precision radial-velocity to search for lower mass planets, aiming to find a Solar System twin.Comment: accepted for publication in Astronomy & Astrophysic
    • 

    corecore