88 research outputs found

    Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As an obligatory intracellular parasite, <it>Trypanosoma cruzi</it>, the etiological agent of Chagas' disease, must invade and multiply within mammalian cells. Cytokeratin 18 (CK18) is among the host molecules that have been suggested as a mediator of important events during <it>T. cruzi</it>-host cell interaction. Based on that possibility, we addressed whether RNA interference (RNAi)-mediated down regulation of the CK18 gene could interfere with the parasite life cycle <it>in vitro</it>. HeLa cells transiently transfected with CK18-RNAi had negligible levels of CK18 transcripts, and significantly reduced levels of CK18 protein expression as determined by immunoblotting or immunofluorescence.</p> <p>Results</p> <p>CK18 negative or positive HeLa cells were invaded equally as well by trypomastigotes of different <it>T. cruzi </it>strains. Also, in CK18 negative or positive cells, parasites recruited host cells lysosomes and escaped from the parasitophorous vacuole equally as well. After that, the growth of amastigotes of the Y or CL-Brener strains, was drastically arrested in CK18 RNAi-treated cells. After 48 hours, the number of amastigotes was several times lower in CK18 RNAi-treated cells when compared to control cells. Simultaneous staining of parasites and CK18 showed that in HeLa cells infected with the Y strain both co-localize. Although the amastigote surface protein-2 contains the domain VTVXNVFLYNR previously described to bind to CK18, in several attempts, we failed to detect binding of a recombinant protein to CK-18.</p> <p>Conclusion</p> <p>The study demonstrates that silencing CK18 by transient RNAi, inhibits intracellular multiplication of the Y and CL strain of <it>T. cruzi </it>in HeLa cells, but not trypanosome binding and invasion.</p

    Measurement of D s <sup>±</sup> production asymmetry in pp collisions at √s=7 and 8 TeV

    Get PDF
    The inclusive Ds±D_s^{\pm} production asymmetry is measured in pppp collisions collected by the LHCb experiment at centre-of-mass energies of s=7\sqrt{s} =7 and 8 TeV. Promptly produced Ds±D_s^{\pm} mesons are used, which decay as Ds±ϕπ±D_s^{\pm}\to\phi\pi^{\pm}, with ϕK+K\phi\to K^+K^-. The measurement is performed in bins of transverse momentum, pTp_{\rm T}, and rapidity, yy, covering the range 2.5<pT<25.02.5<p_{\rm T}<25.0 GeV/c/c and 2.0<y<4.52.0<y<4.5. No kinematic dependence is observed. Evidence of nonzero Ds±D_s^{\pm} production asymmetry is found with a significance of 3.3 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2018-010.htm

    Search for CP violation in Λb0→pK− and Λb0→pπ− decays

    Get PDF
    A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]&lt;2.20(2.56) and Γ[Ξb(6333)0]&lt;1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances
    corecore