22 research outputs found

    Protecting environmental defenders to prevent pandemics

    Get PDF
    Although the jury remains out with regard to the origin of the ongoing COVID-19 pandemic,1 this global health crisis is a stark reminder of the continuous threat of emerging infectious diseases, and the need to tackle their upstream drivers (eg, deforestation and illegal wildlife trade). However, proposals for preventing pandemics at the source2 tend to focus on high-level policies and actions, with relatively little support afforded to ground-level environmental defenders, who are arguably the most important front-line defence in stopping future zoonotic spillovers. Through sustained involvement in activities that reduce deforestation and biodiversity loss (eg, lobbying against powerful industries or politicians, and patrols to curb illegal harvesting), environmental defenders face increasing duress, ranging from occupational burnout to life-threatening attacks.3 Protecting the welfare of environmental defenders must be part of the solution to preventing future pandemics

    Elucidating the diet of the island flying fox (Pteropus hypomelanus) in Peninsular Malaysia through Illumina Next-Generation Sequencing

    Full text link
    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and timeconsuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox\u27s diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genusand species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets

    Mobilising the Next Generation of Planetary Health Leaders: The Dynamism of Youth Engagement in Malaysia

    Get PDF
    With planetary health gaining traction as a global movement and problem-solving approach, this trans-disciplinary field is well-placed to provide an exciting and dynamic platform to promote engagement with young people. Previous studies have shown that although there is great energy and passion from youth, the global planetary health community struggles in sustaining young people’s motivations and engagement in today’s crowded physical and online environments. Planetary health advocates are also dealing with an increase in climate anxiety that has taken a toll on the emotional and mental wellbeing of young people. Here, we review our experience in engaging youth groups and networks in Malaysia through a four-pronged approach (consultation, facilitation, capacity-sharing, and evidence-building), as well as challenges commonly faced by the planetary health community in educating and building a youth movement. After a year of engagement, we found that mobilising the next generation of planetary health leaders requires a change in existing power dynamics to a capacity-sharing model, an emphasis on clear, simplified, and effective communications that utilise the mainstream youth spaces (e.g., social media), and hopeful messages to counter apathy and anxiety into action

    Best practices and software for themanagement and sharing of camera trap data for small and large scales studies

    Get PDF
    Camera traps typically generate large amounts of bycatch data of non-target species that are secondary to the study’s objectives. Bycatch data pooled from multiple studies can answer secondary research questions; however, variation in field and data management techniques creates problems when pooling data from multiple sources. Multi-collaborator projects that use standardized methods to answer broad-scale research questions are rare and limited in geographical scope. Many small, fixed-term independent camera trap studies operate in poorly represented regions, often using field and data management methods tailored to their own objectives. Inconsistent data management practices lead to loss of bycatch data, or an inability to share it easily. As a case study to illustrate common problems that limit use of bycatch data, we discuss our experiences processing bycatch data obtained by multiple research groups during a range-wide assessment of sun bears Helarctos malayanus in Southeast Asia. We found that the most significant barrier to using bycatch data for secondary research was the time required, by the owners of the data and by the secondary researchers (us), to retrieve, interpret and process data into a form suitable for secondary analyses. Furthermore, large quantities of data were lost due to incompleteness and ambiguities in data entry. From our experiences, and from a review of the published literature and online resources, we generated nine recommendations on data management best practices for field site metadata, camera trap deployment metadata, image classification data and derived data products. We cover simple techniques that can be employed without training, special software and Internet access, as well as options for more advanced users, including a review of data management software and platforms. From the range of solutions provided here, researchers can employ those that best suit their needs and capacity. Doing so will enhance the usefulness of their camera trap bycatch data by improving the ease of data sharing, enabling collaborations and expanding the scope of research

    CamTrapAsia: a dataset of tropical forest vertebrate communities from 239 camera trapping studies

    Get PDF
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land-use change and hunting, the latter frequently referred as “defaunation.” This is especially true in tropical Asia where there is extensive land-use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non-invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera-derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large-scale pressence-only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10-, 20-, and 30-km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single-species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data

    Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

    Get PDF
    Non peer reviewe

    CamTrapAsia: A dataset of tropical forest vertebrate communities from 239 camera trapping studies

    Get PDF
    Information on tropical Asian vertebrates has traditionally been sparse, particularly when it comes to cryptic species inhabiting the dense forests of the region. Vertebrate populations are declining globally due to land‐use change and hunting, the latter frequently referred as “defaunation.” This is especially true in tropical Asia where there is extensive land‐use change and high human densities. Robust monitoring requires that large volumes of vertebrate population data be made available for use by the scientific and applied communities. Camera traps have emerged as an effective, non‐invasive, widespread, and common approach to surveying vertebrates in their natural habitats. However, camera‐derived datasets remain scattered across a wide array of sources, including published scientific literature, gray literature, and unpublished works, making it challenging for researchers to harness the full potential of cameras for ecology, conservation, and management. In response, we collated and standardized observations from 239 camera trap studies conducted in tropical Asia. There were 278,260 independent records of 371 distinct species, comprising 232 mammals, 132 birds, and seven reptiles. The total trapping effort accumulated in this data paper consisted of 876,606 trap nights, distributed among Indonesia, Singapore, Malaysia, Bhutan, Thailand, Myanmar, Cambodia, Laos, Vietnam, Nepal, and far eastern India. The relatively standardized deployment methods in the region provide a consistent, reliable, and rich count data set relative to other large‐scale pressence‐only data sets, such as the Global Biodiversity Information Facility (GBIF) or citizen science repositories (e.g., iNaturalist), and is thus most similar to eBird. To facilitate the use of these data, we also provide mammalian species trait information and 13 environmental covariates calculated at three spatial scales around the camera survey centroids (within 10‐, 20‐, and 30‐km buffers). We will update the dataset to include broader coverage of temperate Asia and add newer surveys and covariates as they become available. This dataset unlocks immense opportunities for single‐species ecological or conservation studies as well as applied ecology, community ecology, and macroecology investigations. The data are fully available to the public for utilization and research. Please cite this data paper when utilizing the data

    Why conservationists should be concerned about natural resource legislation affecting indigenous peoples' rights: lessons from Peninsular Malaysia

    No full text
    For conservation to be effective in forests with indigenous peoples, there needs to be greater recognition of indigenous customary rights, particularly with regards to their use of natural resources. Ideally, legislation regulating the use of natural resources should include provisions for the needs of both indigenous peoples and biodiversity. In reality, however, legislative weaknesses often exist and these can result in negative impacts, either on indigenous peoples' livelihoods, their surrounding biodiversity, or both. Here, our case study demonstrates why conservationists need to pay greater attention to natural resource legislation affecting indigenous peoples' rights. Apart from examining relevant laws for ambiguities that may negatively affect biodiversity and livelihoods of indigenous people in Peninsular Malaysia (known as the Orang Asli), we also provide supporting information on actual resource use based on questionnaire surveys. In order to address these ambiguities, we propose possible legislative reconciliation to encourage policy reform. Although there are positive examples of conservationists elsewhere adopting a more inclusive and participatory approach by considering the needs of indigenous peoples, greater recognition must be afforded to land and indigenous rights within natural resource laws for the benefit of indigenous peoples and biodiversity
    corecore