46 research outputs found

    Acupuncture for the treatment of severe acute pain in Herpes Zoster: results of a nested, open-label, randomized trial in the VZV Pain Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data on the potential efficacy of acupuncture (AC) in controlling intense or very intense pain in patients with Herpes Zoster (HZ) has not been so far adequately assessed in comparison with standard pharmacological treatment (ST) by a controlled trial design.</p> <p>Methods</p> <p>Within the VZV Pescara study, pain was assessed in HZ patients on a Visual Analogue Scale (VAS) and by the McGill Pain Questionnaire (MPQ) both at the beginning and at the end of treatment. Response rates, mean changes in pain intensity, differences in total pain burden with an area-under-the-curve (AUC) method over a 1-year follow-up and differences in the incidence of Post-Herpetic Neuralgia (PHN) were evaluated.</p> <p>Results</p> <p>One hundred and two patients were randomized to receive either AC (n = 52) or ST (n = 50) for 4 weeks. Groups were comparable regarding age, sex, pain intensity at presentation and missed antiviral prescription. Both interventions were largely effective. No significant differences were observed in response rates (81.6% vs 89.2%, p = 0.8), mean reduction of VAS (4.1 +/- 2.3 vs 4.9 +/- 1.9, p = 0.12) and MPQ scores (1.3 +/- 0.9 vs 1.3 +/- 0.9, p = 0.9), incidence of PHN after 3 months (48.4% vs 46.8%, p = 0.5), and mean AUC during follow-up (199 +/- 136 vs 173 +/- 141, p = 0.4). No serious treatment-related adverse event was observed in both groups.</p> <p>Conclusions</p> <p>This controlled and randomized trial provides the first evidence of a potential role of AC for the treatment of acute herpetic pain.</p> <p>Trial registration</p> <p>ChiCTR-TRC-10001146.</p

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    Genotoxic and oxidative effects induced on A549 cells by extract of PM10 collected in an electric steel plant

    No full text

    Altered glycogen metabolism in cultured astrocytes from mice with chronic glutathione deficit; relevance for neuroenergetics in schizophrenia.

    Get PDF
    Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia

    Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.</p> <p>Results</p> <p>A new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based <b><it>in vivo</it></b> imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled <b><it>ex vivo</it></b> at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.</p> <p>Conclusions</p> <p>We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for <b><it>in vivo</it></b> imaging techniques.</p
    corecore