196 research outputs found

    Using conservation science to advance corporate biodiversity accountability

    Get PDF
    Biodiversity declines threaten the sustainability of global economies and societies. Acknowledging this, businesses are beginning to make commitments to account for and mitigate their influence on biodiversity, and report this in sustainability reports. The top 100 of the 2016 Fortune 500 Global companies' (the Fortune 100) sustainability reports were assessed to gauge the current state of corporate biodiversity accountability. Many companies acknowledged biodiversity, but corporate biodiversity accountability is in its infancy. Almost half (49) of the Fortune 100 mentioned biodiversity in reports, and 31 made clear biodiversity commitments, of which only 5 could be considered specific, measureable and time?bound. A variety of biodiversity?related activities were disclosed (e.g., managing impacts, restoring biodiversity, and investing in biodiversity), but only 9 companies provided quantitative indicators to verify the magnitude of their activities (e.g., area of habitat restored). No companies reported quantitative biodiversity outcomes, making it difficult to determine whether business actions were of sufficient magnitude to address impacts, and are achieving positive outcomes for nature. Conservation science can help advance approaches to corporate biodiversity accountability through developing science?based biodiversity commitments, meaningful indicators, and more targeted activities to address business impacts. With the “biodiversity policy super?year” of 2020 rapidly approaching, now is the time for conservation scientists to engage with and support businesses to play a critical role in setting the new agenda for a sustainable future for the planet, with biodiversity at its heart

    Establishing IUCN Red List Criteria for Threatened Ecosystems

    Get PDF
    The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature\u27s (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem\u27s extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012

    Microplastics in Seawater: Recommendations from the Marine Strategy Framework Directive Implementation Process

    Get PDF
    Microplastic litter is a pervasive pollutant present in marine systems across the globe. The legacy of microplastics pollution in the marine environment today may remain for years to come due to the persistence of these materials. Microplastics are emerging contaminants of potential concern and as yet there are few recognized approaches for monitoring. In 2008, the EU Marine Strategy Framework Directive (MSFD, 2008/56/EC) included microplastics as an aspect to be measured. Here we outline the approach as discussed by the European Union expert group on marine litter, the technical Subgroup on Marine litter (TSG-ML), with a focus on the implementation of monitoring microplastics in seawater in European seas. It is concluded that harmonization and coherence is needed to achieve reliable monitoring

    Measuring Global Trends in the Status of Biodiversity: Red List Indices for Birds

    Get PDF
    The rapid destruction of the planet's biodiversity has prompted the nations of the world to set a target of achieving a significant reduction in the rate of loss of biodiversity by 2010. However, we do not yet have an adequate way of monitoring progress towards achieving this target. Here we present a method for producing indices based on the IUCN Red List to chart the overall threat status (projected relative extinction risk) of all the world's bird species from 1988 to 2004. Red List Indices (RLIs) are based on the number of species in each Red List category, and on the number changing categories between assessments as a result of genuine improvement or deterioration in status. The RLI for all bird species shows that their overall threat status has continued to deteriorate since 1988. Disaggregated indices show that deteriorations have occurred worldwide and in all major ecosystems, but with particularly steep declines in the indices for Indo-Malayan birds (driven by intensifying deforestation of the Sundaic lowlands) and for albatrosses and petrels (driven by incidental mortality in commercial longline fisheries). RLIs complement indicators based on species population trends and habitat extent for quantifying global trends in the status of biodiversity. Their main weaknesses are that the resolution of status changes is fairly coarse and that delays may occur before some status changes are detected. Their greatest strength is that they are based on information from nearly all species in a taxonomic group worldwide, rather than a potentially biased subset. At present, suitable data are only available for birds, but indices for other taxonomic groups are in development, as is a sampled index based on a stratified sample from all major taxonomic groups

    Use of demand for and spatial flow of ecosystem services to identify priority areas

    Get PDF
    Policies and research increasingly focus on the protection of ecosystem services (ESs) through priority-area conservation. Priority areas for ESs should be identified based on ES capacity and ES demand and account for the connections between areas of ES capacity and demand (flow) resulting in areas of unique demand-supply connections (flow zones). We tested ways to account for ES demand and flow zones to identify priority areas in the European Union. We mapped the capacity and demand of a global (carbon sequestration), a regional (flood regulation), and 3 local ESs (air quality, pollination, and urban leisure). We used Zonation software to identify priority areas for ESs based on 6 tests: with and without accounting for ES demand and 4 tests that accounted for the effect of ES flow zone. There was only 37.1% overlap between the 25% of priority areas that encompassed the most ESs with and without accounting for ES demand. The level of ESs maintained in the priority areas increased from 23.2% to 57.9% after accounting for ES demand, especially for ESs with a small flow zone. Accounting for flow zone had a small effect on the location of priority areas and level of ESs maintained but resulted in fewer flow zones without ES maintained relative to ignoring flow zones. Accounting for demand and flow zones enhanced representation and distribution of ESs with local to regional flow zones without large trade-offs relative to the global ES. We found that ignoring ES demand led to the identification of priority areas in remote regions where benefits from ES capacity to society were small. Incorporating ESs in conservation planning should therefore always account for ES demand to identify an effective priority network for ESs.Peer reviewe

    Levers and leverage points for pathways to sustainability

    Get PDF
    Humanity is on a deeply unsustainable trajectory. We are exceeding planetary boundaries and unlikely to meet many international sustainable development goals and global environmental targets. Until recently, there was no broadly accepted framework of interventions that could ignite the transformations needed to achieve these desired targets and goals. As a component of the IPBES Global Assessment, we conducted an iterative expert deliberation process with an extensive review of scenarios and pathways to sustainability, including the broader literature on indirect drivers, social change and sustainability transformation. We asked, what are the most important elements of pathways to sustainability? Applying a social–ecological systems lens, we identified eight priority points for intervention (leverage points) and five overarching strategic actions and priority interventions (levers), which appear to be key to societal transformation. The eight leverage points are: (1) Visions of a good life, (2) Total consumption and waste, (3) Latent values of responsibility, (4) Inequalities, (5) Justice and inclusion in conservation, (6) Externalities from trade and other telecouplings, (7) Responsible technology, innovation and investment, and (8) Education and knowledge generation and sharing. The five intertwined levers can be applied across the eight leverage points and more broadly. These include: (A) Incentives and capacity building, (B) Coordination across sectors and jurisdictions, (C) Pre-emptive action, (D) Adaptive decision-making and (E) Environmental law and implementation. The levers and leverage points are all non-substitutable, and each enables others, likely leading to synergistic benefits. Transformative change towards sustainable pathways requires more than a simple scaling-up of sustainability initiatives—it entails addressing these levers and leverage points to change the fabric of legal, political, economic and other social systems. These levers and leverage points build upon those approved within the Global Assessment's Summary for Policymakers, with the aim of enabling leaders in government, business, civil society and academia to spark transformative changes towards a more just and sustainable world. A free Plain Language Summary can be found within the Supporting Information of this article.Fil: Chan, Kai M. A.. University of British Columbia; CanadáFil: Boyd, David R.. University of British Columbia; CanadáFil: Gould, Rachelle. University of Vermont; Estados UnidosFil: Jetzkowitz, Jens. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Liu, Jianguo. Michigan State University; Estados UnidosFil: Muraca, Bárbara. University of Oregon; Estados UnidosFil: Naidoo, Robin. University of British Columbia; CanadáFil: Beck, Paige. University of British Columbia; CanadáFil: Satterfield, Terre. University of British Columbia; CanadáFil: Selomane, Odirilwe. Stellenbosch University; SudáfricaFil: Singh, Gerald G.. University of British Columbia; CanadáFil: Sumaila, Rashid. University of British Columbia; CanadáFil: Ngo, Hien T.. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; AlemaniaFil: Boedhihartono, Agni Klintuni. University of British Columbia; CanadáFil: Agard, John. The University Of The West Indies; Trinidad y TobagoFil: de Aguiar, Ana Paula D.. Stockholms Universitet; SueciaFil: Armenteras, Dolors. Universidad Nacional de Colombia; ColombiaFil: Balint, Lenke. BirdLife International; Reino UnidoFil: Barrington-Leigh, Christopher. Mcgill University; CanadáFil: Cheung, William W. L.. University of British Columbia; CanadáFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Driscoll, John. University of British Columbia; CanadáFil: Esler, Karen. Stellenbosch University; SudáfricaFil: Eyster, Harold. University of British Columbia; CanadáFil: Gregr, Edward J.. University of British Columbia; CanadáFil: Hashimoto, Shizuka. The University Of Tokyo; JapónFil: Hernández Pedraza, Gladys Cecilia. The World Economy Research Center; CubaFil: Hickler, Thomas. Goethe Universitat Frankfurt; AlemaniaFil: Kok, Marcel. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Lazarova, Tanya. PBL Netherlands Environmental Assessment Agency; Países BajosFil: Mohamed, Assem A. A.. Central Laboratory for Agricultural Climate; EgiptoFil: Murray-Hudson, Mike. University Of Botswana; BotsuanaFil: O'Farrell, Patrick. University of Cape Town; SudáfricaFil: Palomo, Ignacio. Basque Centre for Climate Change; EspañaFil: Saysel, Ali Kerem. Boğaziçi University; TurquíaFil: Seppelt, Ralf. Martin-universität Halle-wittenberg; AlemaniaFil: Settele, Josef. German Centre for Integrative Biodiversity Research-iDiv; AlemaniaFil: Strassburg, Bernardo. International Institute for Sustainability, Estrada Dona Castorina; BrasilFil: Xue, Dayuan. Minzu University Of China; ChinaFil: Brondízio, Eduardo S.. Indiana University; Estados Unido

    Terrestrial Reserve Networks Do Not Adequately Represent Aquatic Ecosystems

    Full text link
    Las áreas protegidas son una piedra angular de la conservación y han sido diseñadas principalmente alrededor de atributos terrestres. Las especies y ecosistemas dulceacuícolas se encuentran en peligro, pero la efectividad de las áreas protegidas existentes para representar las características dulceacuícolas es poco conocida. Utilizando las aguas interiores de Michigan como un caso de prueba, cuantificamos la cobertura de cuatro atributos dulceacuícolas clave (humedales, zonas ribereñas, recarga de agua subterránea y especies raras) en las tierras conservadas y las comparamos con la representación de los atributos terrestres. Los humedales estaban incluidos en las áreas protegidas más a menudo que lo esperado por azar, pero las zonas ribereñas estuvieron insuficientemente representadas en todas las tierras protegidas (GAP1–3), particularmente en manantiales y ríos grandes. Sin embargo, las zonas ribereñas estuvieron bien representadas en las tierras con protección estricta (GAP 1–2) debido a la contribución del Programa Nacional de Ríos Silvestres y Escénicos. La representación de áreas de recarga de aguas subterráneas generalmente fue proporcional al área de la red de reservas dentro de cuencas hidrológicas, aunque un sitio importante de recarga asociado con algunos de los ríos más valiosos en Michigan estaba casi totalmente desprotegido. La representación de especies en áreas protegidas difirió significativamente entre las especies acuáticas obligadas, de humedales y terrestres, con una representación generalmente mayor para las especies terrestres y menor para las acuáticas. Nuestros resultados ilustran la necesidad de evaluar y atender la representación de los atributos dulceacuícolas dentro de las áreas protegidas y el valor de ampliar el análisis de brechas y otras evaluaciones de áreas protegidas para incluir los procesos ecosistémicos claves que son requisito para la conservación a largo plazo de especies y ecosistemas. Concluimos que las redes de áreas protegidas orientadas al medio terrestre proporcionan una red de seguridad débil para los atributos acuáticos, lo que significa que se requiere planeación y manejo complementario tanto para objetivos de conservación dulceacuícolas como terrestres.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79138/1/COBI_1460_sm_AppendixS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79138/2/COBI_1460_sm_AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79138/3/j.1523-1739.2010.01460.x.pd
    corecore