563 research outputs found

    The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state

    Get PDF
    We introduce and analyze a minimal model of epigenetic silencing in budding yeast, built upon known biomolecular interactions in the system. Doing so, we identify the epigenetic marks essential for the bistability of epigenetic states. The model explicitly incorporates two key chromatin marks, namely H4K16 acetylation and H3K79 methylation, and explores whether the presence of multiple marks lead to a qualitatively different systems behavior. We find that having both modifications is important for the robustness of epigenetic silencing. Besides the silenced and transcriptionally active fate of chromatin, our model leads to a novel state with bivalent (i.e., both active and silencing) marks under certain perturbations (knock-out mutations, inhibition or enhancement of enzymatic activity). The bivalent state appears under several perturbations and is shown to result in patchy silencing. We also show that the titration effect, owing to a limited supply of silencing proteins, can result in counter-intuitive responses. The design principles of the silencing system is systematically investigated and disparate experimental observations are assessed within a single theoretical framework. Specifically, we discuss the behavior of Sir protein recruitment, spreading and stability of silenced regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page

    Simultaneous Activation of Complement and Coagulation by MBL-Associated Serine Protease 2

    Get PDF
    The complement system is an important immune mechanism mediating both recognition and elimination of foreign bodies. The lectin pathway is one pathway of three by which the complement system is activated. The characteristic protease of this pathway is Mannan-binding lectin (MBL)-associated serine protease 2 (MASP2), which cleaves complement proteins C2 and C4. We present a novel and alternative role of MASP2 in the innate immune system. We have shown that MASP2 is capable of promoting fibrinogen turnover by cleavage of prothrombin, generating thrombin. By using a truncated active form of MASP2 as well as full-length MASP2 in complex with MBL, we have shown that the thrombin generated is active and can cleave both factor XIII and fibrinogen, forming cross-linked fibrin. To explore the biological significance of these findings we showed that fibrin was covalently bound on a bacterial surface to which MBL/MASP2 complexes were bound. These findings suggest that, as has been proposed for invertebrates, limited clotting may contribute to the innate immune response

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 Β΅g and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    FishNet: an online database of zebrafish anatomy

    Get PDF
    Background: Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. Results: To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D) models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. Conclusion: FishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D

    P-hydroxyphenylpyruvate, an intermediate of the Phe/Tyr catabolism, improves mitochondrial oxidative metabolism under stressing conditions and prolongs survival in rats subjected to profound hemorrhagic shock

    Get PDF
    The aim of this study was to test the effect of a small volume administration of p-hydroxyphenylpyruvate (pHPP) in a rat model of profound hemorrhagic shock and to assess a possible metabolic mechanism of action of the compound. The results obtained show that hemorrhaged rats treated with 2-4% of the estimated blood volume of pHPP survived significantly longer (p<0.001) than rats treated with vehicle. In vitro analysis on cultured EA.hy 926 cells demonstrated that pHPP improved cell growth rate and promoted cell survival under stressing conditions. Moreover, pHPP stimulated mitochondria-related respiration under ATP-synthesizing conditions and exhibited antioxidant activity toward mitochondria-generated reactive oxygen species. The compound effects reported in the in vitro and in vivo analyses were obtained in the same millimolar concentration range. These data disclose pHPP as an efficient energetic substrates-supplier to the mitochondrial respiratory chain as well as an antioxidant supporting the view that the compound warrants further evaluation as a therapeutic agent. Β© 2014 Cotoia et al

    Electrophysiological study of local/global processing in Williams syndrome

    Get PDF
    Persons with Williams syndrome (WS) demonstrate pronounced deficits in visuo-spatial processing. The purpose of the current study was to examine the preferred level of perceptual analysis in young adults with WS (n = 21) and the role of attention in the processing of hierarchical stimuli. Navon-like letter stimuli were presented to adults with WS and age-matched typical controls in an oddball paradigm where local and global targets could appear with equal probability. Participants received no explicit instruction to direct their attention toward a particular stimulus level. Behavioral and event-related potential (ERP) data were recorded. Behavioral data indicated presence of a global precedence effect in persons with WS. However, their ERP responses revealed atypical brain mechanisms underlying attention to local information. During the early perceptual analysis, global targets resulted in reduced P1 and enhanced N150 responses in both participant groups. However, only the typical comparison group demonstrated a larger N150 to local targets. At the more advanced stages of cognitive processing, a larger P3b response to global and local targets was observed in the typical group but not in persons with WS, who instead demonstrated an enhanced P3a to global targets only. The results indicate that in a perceptual task, adults with WS may experience greater than typical global-to-local interference and not allocate sufficient attentional resources to local information

    siRNA Silencing of Proteasome Maturation Protein (POMP) Activates the Unfolded Protein Response and Constitutes a Model for KLICK Genodermatosis

    Get PDF
    Keratosis linearis with ichthyosis congenita and keratoderma (KLICK) is an autosomal recessive skin disorder associated with a single-nucleotide deletion in the 5β€²untranslated region of the proteasome maturation protein (POMP) gene. The deletion causes a relative switch in transcription start sites for POMP, predicted to decrease levels of POMP protein in terminally differentiated keratinocytes. To investigate the pathophysiology behind KLICK we created an in vitro model of the disease using siRNA silencing of POMP in epidermal air-liquid cultures. Immunohistochemical analysis of the tissue constructs revealed aberrant staining of POMP, proteasome subunits and the skin differentiation marker filaggrin when compared to control tissue constructs. The staining patterns of POMP siRNA tissue constructs showed strong resemblance to those observed in skin biopsies from KLICK patients. Western blot analysis of lysates from the organotypic tissue constructs revealed an aberrant processing of profilaggrin to filaggrin in samples transfected with siRNA against POMP. Knock-down of POMP expression in regular cell cultures resulted in decreased amounts of proteasome subunits. Prolonged silencing of POMP in cultured cells induced C/EBP homologous protein (CHOP) expression consistent with an activation of the unfolded protein response and increased endoplasmic reticulum (ER) stress. The combined results indicate that KLICK is caused by reduced levels of POMP, leading to proteasome insufficiency in differentiating keratinocytes. Proteasome insufficiency disturbs terminal epidermal differentiation, presumably by increased ER stress, and leads to perturbed processing of profilaggrin. Our findings underline a critical role for the proteasome in human epidermal differentiation

    Deciphering a subgroup of breast carcinomas with putative progression of grade during carcinogenesis revealed by comparative genomic hybridisation (CGH) and immunohistochemistry

    Get PDF
    Distinct parallel cytogenetic pathways in breast carcinogenesis could be identified in recent years. Nevertheless, it remained unclear as to which tumours may have progressed in grade or which patterns of cytogenetic alteration may define the switch from an in situ towards an invasive lesion. In order to gain more detailed insights into cytogenetic mechanisms of the pathogenesis of breast cancer, the chromosomal imbalances of 206 invasive breast cancer cases were characterised by means of comparative genomic hybridisation (CGH). CGH data were subjected to hierarchical cluster analysis and the results were further compared with immunohistochemical findings on tissue arrays from the same breast cancer cases. The combined analysis of immunohistochemical and cytogenetic data provided evidence that carcinomas with gains of 7p, and to a lesser extent losses of 9q and gains of 5p, are a distinct subgroup within the spectrum of ductal invasive grade 3 breast carcinomas. These aberrations were associated with a high degree of cytogenetic instability (16.6 alterations per case on average), 16q-losses in over 70% of these cases, strong oestrogen receptor expression and absence of strong expression of p53, c-erbB2 and Ck 5. These characteristics provide strong support for the hypothesis that these tumours may develop through stages of well- and perhaps intermediately differentiated breast cancers. Our results therefore underline the existence of several parallel and also stepwise progression pathways towards breast cancer
    • …
    corecore