341 research outputs found
Asymptotic quasinormal modes of Reissner-Nordstr\"om and Kerr black holes
According to a recent proposal, the so-called Barbero-Immirzi parameter of
Loop Quantum Gravity can be fixed, using Bohr's correspondence principle, from
a knowledge of highly-damped black hole oscillation frequencies. Such
frequencies are rather difficult to compute, even for Schwarzschild black
holes. However, it is now quite likely that they may provide a fundamental link
between classical general relativity and quantum theories of gravity. Here we
carry out the first numerical computation of very highly damped quasinormal
modes (QNM's) for charged and rotating black holes. In the Reissner-Nordstr\"om
case QNM frequencies and damping times show an oscillatory behaviour as a
function of charge. The oscillations become faster as the mode order increases.
At fixed mode order, QNM's describe spirals in the complex plane as the charge
is increased, tending towards a well defined limit as the hole becomes
extremal. Kerr QNM's have a similar oscillatory behaviour when the angular
index . For the real part of Kerr QNM frequencies tends to
, being the angular velocity of the black hole horizon, while
the asymptotic spacing of the imaginary parts is given by .Comment: 13 pages, 7 figures. Added result on the asymptotic spacing of the
imaginary part, minor typos correcte
Thermodynamic and gravitational instability on hyperbolic spaces
We study the properties of anti--de Sitter black holes with a Gauss-Bonnet
term for various horizon topologies (k=0, \pm 1) and for various dimensions,
with emphasis on the less well understood k=-1 solution. We find that the zero
temperature (and zero energy density) extremal states are the local minima of
the energy for AdS black holes with hyperbolic event horizons. The hyperbolic
AdS black hole may be stable thermodynamically if the background is defined by
an extremal solution and the extremal entropy is non-negative. We also
investigate the gravitational stability of AdS spacetimes of dimensions D>4
against linear perturbations and find that the extremal states are still the
local minima of the energy. For a spherically symmetric AdS black hole
solution, the gravitational potential is positive and bounded, with or without
the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet
coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS
space), is found useful to keep the potential bounded from below, as required
for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps
figure
Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black holes using third order WKB approach
We obtain the quasinormal modes for tensor perturbations of Gauss-Bonnet (GB)
black holes in dimensions and vector perturbations in
and 8 dimensions using third order WKB formalism. The tensor perturbation for
black holes in is not considered because of the fact that it is unstable
to tensor mode perturbations. In the case of uncharged GB black hole, for both
tensor and vector perturbations, the real part of the QN frequency increases as
the Gauss-Bonnet coupling () increases. The imaginary part first
decreases upto a certain value of and then increases with
for both tensor and vector perturbations. For larger values of , the
QN frequencies for vector perturbation differs slightly from the QN frequencies
for tensorial one. It has also been shown that as , the
quasinormal mode frequency for tensor and vector perturbation of the
Schwarzschild black hole can be obtained. We have also calculated the
quasinormal spectrum of the charged GB black hole for tensor perturbations.
Here we have found that the real oscillation frequency increases, while the
imaginary part of the frequency falls with the increase of the charge. We also
show that the quasinormal frequencies for scalar field perturbations and the
tensor gravitational perturbations do not match as was claimed in the
literature. The difference in the result increases if we increase the GB
coupling.Comment: 17 pages, 11 figures, change in title and abstract, new equations and
results added for QN frequencies for vector perturbations, new referencees
adde
Relativistic theory of elastic deformable astronomical bodies: perturbation equations in rotating spherical coordinates and junction conditions
In this paper, the dynamical equations and junction conditions at the
interface between adjacent layers of different elastic properties for an
elastic deformable astronomical body in the first post-Newtonian approximation
of Einstein theory of gravity are discussed in both rotating Cartesian
coordinates and rotating spherical coordinates. The unperturbed rotating body
(the ground state) is described as uniformly rotating, stationary and
axisymmetric configuration in an asymptotically flat space-time manifold.
Deviations from the equilibrium configuration are described by means of a
displacement field. In terms of the formalism of relativistic celestial
mechanics developed by Damour, Soffel and Xu, and the framework established by
Carter and Quintana the post Newtonian equations of the displacement field and
the symmetric trace-free shear tensor are obtained. Corresponding
post-Newtonian junction conditions at interfaces also the outer surface
boundary conditions are presented. The PN junction condition is an extension of
Wahr's one which is a Newtonian junction conditions without rotating.Comment: Revtex4, 14 page
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto: i - efeito da concentração.
O vermicomposto contém uma concentração elevada de substâncias húmicas e já é bem conhecido o efeito do seu uso sobre as propriedades do solo. No entanto,a ação direta das substâncias húmicas sobre o metabolismo das plantas é menos conhecida. O objetivo deste trabalho foi avaliar o uso de humatos extraídos de vermicomposto de esterco de curral com KOH 0,1 mol L-1 sobre o desenvolvimento e metabolismo de ATP em plântulas de alface. Após a germinação, plântulas de alface foram tratadas com os humatos em concentrações que variaram de 0 a 100 mg L-1 de C, durante quinze dias. Foram avaliados o crescimento da raiz e a atividade das bombas de H+ isoladas da fração microssomal do sistema radicular. Foi observado aumento na matéria fresca e seca do sistema radicular, bem como no número de sítios de mitose, raízes emergidas do eixo principal, na área e no comprimento radiculares, com o uso do humato na concentração de 25 mg L-1 de C. Também foi observado, nessa concentração, aumento significativo na hidrólise de ATP pelas bombas de H+, responsáveis pela geração de energia necessária à absorção de íons e pelo crescimento celular
Effect of material hybridization on the strength of scarf adhesive joints
Adhesively-bonded joints have become more efficient due to the improvement of adhesives’ characteristics. On the other hand, with the use of composites in structures it is possible to reduce weight. Due to this, new techniques are being explored, including adhesively-bonding different materials. Nowadays, in many high performance structures, it is necessary to combine composite materials with other light-weighted metals such as aluminium or titanium. This work reports on an experimental and numerical study for hybrid scarf joints between composite and aluminium adherends, and considering different values of the scarf angle (α). The numerical analysis by Finite Elements (FE), using the software Abaqus®, enabled the obtainment of peel (σy) and shear stresses (τxy), which are then used to discuss the strength between different joint configurations. Cohesive zone modelling (CZM) was used to predict the joint strength and the results were compared to the experiments for validation. The joints’ behaviour was highly dependent on α, and CZM were validated for the design process of hybrid scarf joints.info:eu-repo/semantics/publishedVersio
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
- …
