1,003 research outputs found
Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord
The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification, and large-scale assessments of pH and the saturation state for aragonite (O<sub>arag</sub>) have led to the notion that the Arctic Ocean is already close to a corrosive state. In high-latitude coastal waters the regulation of pH and O<sub>arag</sub> is, however, far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. Effects of ocean acidification on calcifiers and non-calcifying phototrophs occupying coastal habitats cannot be derived from extrapolation of current and forecasted offshore conditions, but they require an understanding of the regimes of pH and O<sub>arag</sub> in their coastal habitats. To increase knowledge of the natural variability in pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH variability in a Greenland fjord in a nested-scale approach. A sensor array logging pH, O<sub>2</sub>, PAR, temperature and salinity was applied on spatial scales ranging from kilometre scale across the horizontal extension of the fjord; to 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores; and to centimetre to metre scale within kelp forests and millimetre scale across diffusive boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH measurements combined with point samples of total alkalinity, dissolved inorganic carbon and relationships to salinity, we also estimated variability in O<sub>arag</sub>. Results show variability in pH and O<sub>arag</sub> of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m<sup>3</sup> of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of > 1.5 units and macrophyte diffusive boundary layers a pH range of up to 0.8 units. Overall, pelagic and benthic metabolism was an important driver of pH and O<sub>arag</sub> producing mosaics of variability from low levels in the dark to peak levels at high irradiance generally appearing favourable for calcification. We suggest that productive coastal environments may form niches of high pH in a future acidified Arctic Ocean
Whole-system metabolism and CO<sub>2</sub> fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean)
The relationship between whole-system metabolism estimates based on planktonic and benthic incubations (bare sediments and seagrass, Posidonia oceanica meadows), and CO2 fluxes across the air-sea interface were examined in the Bay of Palma (Mallorca, Spain) during two cruises in March and June 2002. Moreover, planktonic and benthic incubations were performed at monthly intervals from March 2001 to October 2002 in a seagrass vegetated area of the bay. From the annual study, results showed a contrast between the planktonic compartment, which was heterotrophic during most of the year, except for occasional bloom episodes, and the benthic compartment, which was slightly autotrophic. Whereas the seagrass community was autotrophic, the excess organic carbon production therein could only balance the excess respiration of the planktonic compartment in shallow waters (<10 m) relative to the maximum depth of the bay (55 m). This generated a horizontal gradient from autotrophic or balanced communities in the shallow, seagrass-covered areas of the bay, to strongly heterotrophic communities in deeper areas, consistent with the patterns of CO2 fields and fluxes across the bay observed during the two extensive cruises in 2002. Finally, dissolved inorganic carbon and oxygen budgets provided NEP estimates in fair agreement with those derived from direct metabolic estimates based on incubated samples over the Posidonia oceanica meadow
Shipping traffic through the Arctic Ocean: Spatial distribution, seasonal variation, and its dependence on the sea ice extent
The reduction in sea ice cover with Arctic warming facilitates shipping through remarkably shorter shipping routes. Automatic identification system (AIS) is a powerful data source to monitor Arctic Ocean shipping. Based on the AIS data from an online platform, we quantified the spatial distribution of shipping through this area, its intensity, and the seasonal variation. Shipping was heterogeneously distributed with power-law exponents that depended on the vessel category. We contextualized the estimated exponents with the analytical distribution of a transit model in one and two dimensions. Fishing vessels had the largest spatial spread, while narrower shipping routes associated with cargo and tanker vessels had a width correlated with the sea ice area. The time evolution of these routes showed extended periods of shipping activity through the year. We used AIS data to quantify recent Arctic shipping, which brings an opportunity for shorter routes, but likely impacting the Arctic ecosystem. © 2024J.P.R. was supported by Juan de la Cierva Formacion program (Ref. FJC2019-040622-I) funded by MCIN/AEI/10.13039/501100011033, and by the Vicen\u00E7 Mut program from Govern de les Illes Balears. J.P.R. received support from Spanish Research Agency MCIN/AEI/10.13039/501100011033 via project MISLAND (PID2020-114324GB-C22). This research is supported by Mar\u00EDa de Maeztu Excellence Unit 2023-2027 (Refs. CEX2021-001201-M and CEX2021-001164-M) funded by MCIN/AEI/10.13039/501100011033. The authors acknowledge the platform HUB Ocean (hubocean.earth) for access to the data and the computational facilities to remotely run all the analyses, through the Ocean Data Connector. J.P.R.: conceptualization, data curation, formal analysis (leading), software, visualization, and writing \u2013 original draft. K.K.: formal analysis and writing \u2013 review and editing. C.M.D.: conceptualization and writing \u2013 review and editing. V.M.E.: conceptualization, formal analysis (supporting), and writing \u2013 original draft. The authors declare no competing interests. J.P.R. was supported by Juan de la Cierva Formacion program (Ref. FJC2019-040622-I ) funded by MCIN/AEI/10.13039/501100011033 , and by the Vicen\u00E7 Mut program from Govern de les Illes Balears. J.P.R. received support from Spanish Research Agency MCIN/AEI/10.13039/501100011033 via project MISLAND ( PID2020-114324GB-C22 )
Determination of kinetic parameters for the torrefaction of coconut endocarp –Acrocomia aculeata– in the temperature range 230–320 °C
"The purpose of this study was to determine kinetic parameters for models commonly used for
lignocellulosic biomass and evaluate different types of kinetic models proposed in the literature."CONACYT - Consejo Nacional de Ciencias y TecnologíaPROCIENCI
Liste alphabétique des titres
In the last years many populations of anurans have declined and extinctions have been recorded. They were related to environmental pollution, changes of land use and emerging diseases. The main objective of this study was to determine copper sensitivity of the anuran of the Amazon Rhinella granulosa and Scinax ruber tadpoles at stage 25 and Scinax ruber eggs exposed for 96 h to copper concentrations ranging from 15 µg Cu L-1 to 94 µg Cu L-1. LC50 at 96 h of Rhinella granulosa Gosner 25, Scinax ruber Gosner 25 and Scinax ruber eggs in black water of the Amazon were 23.48, 36.37 and 50.02 µg Cu L-1, respectively. The Biotic Ligand Model was used to predict the LC50 values for these species and it can be considered a promising tool for these tropical species and water conditions. Copper toxicity depends on water physical-chemical composition and on the larval stage of the tadpoles. The Gosner stage 19-21 (related to the appearance of external gills) is the most vulnerable and the egg stage is the most resistant. In case of contamination by copper, the natural streams must have special attention, since copper is more bioavailable.Nos últimos anos foram registrados muitas extinções e declínios de populações de anuros. Eles estavam relacionados com a poluição do ambiente, a mudanças no uso da terra e ao surgimento de doenças. O principal objetivo deste estudo foi determinar a sensibilidade dos anuros amazônicos ao cobre. Os girinos de Scinax ruber e Rhinella granulosa no estadio 25 e os ovos de Scinax ruber foram expostos por 96 horas a concentrações de cobre entre 15 µg Cu L-1 a 94 µg Cu L-1. A CL50 -96 h dos girinos de Rhinella granulosa, dos girinos de Scinax ruber e dos ovos de Scinax ruber em águas pretas da Amazônia foram 23,48; 36,37 e 50,02 µg Cu L-1, respectivamente. O modelo do ligante biótico foi usado para prever os valores de CL50 para essas duas espécies e pode ser considerado uma ferramenta promissora para essas espécies tropicais e para essas condições de água. A Toxicidade de cobre depende da composição físico-química da água e do estagio larval dos girinos. O estadio 19-21 de Gosner (relacionados ao aparecimento das brânquias externas) são os mais vulnerável e o estagio de ovo é o mais resistente. Em caso de contaminação por cobre, os igarapés naturais devem ter uma atenção especial, uma vez que o cobre é mais biodisponível nesse ambiente
Balanço do nitrogênio e fósforo em solo com cultivo orgânico de hortaliças após a incorporação de biomassa de guandu.
Os objetivos deste trabalho foram avaliar os efeitos de faixas de guandu (Cajanus cajan) e da incorporação da biomassa proveniente de sua poda na fertilidade do solo e na produtividade de três hortaliças sob cultivo orgânico. O delineamento usado foi de blocos casualizados completos em esquema de parcelas subsubdivididas com três repetições. As produtividades de beterraba, cenoura e feijão-de-vagem não foram afetadas pelos tratamentos. Nas parcelas onde não houve incorporação da biomassa de guandu, o balanço de nitrogênio no sistema foi negativo, ao passo que com a incorporação, esse balanço foi positivo. Embora tenha ocorrido balanço positivo para o fósforo nas parcelas sem a incorporação de biomassa de guandu, houve um aumento significativo na absorção desse elemento pelas hortaliças quando o material foi incorporado. O sistema de cultivo em aléias de guandu pode representar uma prática vantajosa para os produtores orgânicos, por contribuir na manutenção da fertilidade do solo
Assessment of Red Sea temperatures in CMIP5 models for present and future climate
The increase of the temperature in the Red Sea basin due to global warming could have a large negative effect on its marine ecosystem. Consequently, there is a growing interest, from the scientific community and public organizations, in obtaining reliable projections of the Red Sea temperatures throughout the 21st century. However, the main tool used to do climate projections, the global climate models (GCM), may not be well suited for that relatively small region. In this work we assess the skills of the CMIP5 ensemble of GCMs in reproducing different aspects of the Red Sea 3D temperature variability. The results suggest that some of the GCMs are able to reproduce the present variability at large spatial scales with accuracy comparable to medium and high-resolution hindcasts. In general, the skills of the GCMs are better inside the Red Sea than outside, in the Gulf of Aden. Based on their performance, 8 of the original ensemble of 43 GCMs have been selected to project the temperature evolution of the basin. Bearing in mind the GCM limitations, this can be an useful benchmark once the high resolution projections are available. Those models project an averaged warming at the end of the century (2080–2100) of 3.3 ±> 0.6°C and 1.6 ±> 0.4°C at the surface under the scenarios RCP8.5 and RCP4.5, respectively. In the deeper layers the warming is projected to be smaller, reaching 2.2 ±> 0.5°C and 1.5 ±> 0.3°C at 300 m. The projected warming will largely overcome the natural multidecadal variability, which could induce temporary and moderate decrease of the temperatures but not enough to fully counteract it. We have also estimated how the rise of the mean temperature could modify the characteristics of the marine heatwaves in the region. The results show that the average length of the heatwaves would increase ~15 times and the intensity of the heatwaves ~4 times with respect to the present conditions under the scenario RCP8.5 (10 time and 3.6 times, respectively, under scenario RCP4.5).En prensa4,41
The genome of the seagrass <i>Zostera marina</i> reveals angiosperm adaptation to the sea
Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants
Use of European pulses to produce functional beverages – From chickpea and lupin as dairy alternatives
Consumption of plant based products as dairy alternatives is increasing steeply. This diet transition can only be
achieved if these products keep the nutritional value and meet consumer’s sensory acceptance. This work aimed
to evaluate the decrease of the “beany” flavour and of raffinose, stachyose and verbascose contents in EU pulse
beveragés production, and also the best lactic fermentation conditions of the beverages, towards chickpea- and
lupin-based yoghurts, with rheology properties similar to the commercial soy yoghurts. The reduction of “beany”
volatile compounds of chickpea and lupin beverages during processing was confirmed through GC–MS analysis.
Soaking and cooking processes were effective in removing flatulence sugars with almost 48% loss from the initial
content in lupin beverage. The fermentation conditions at 40 ◦C, 12 h and 2% (w/v) of starter concentration
evidenced the best viscoelastic structure and flow properties. The lupin yoghurt-type showed a similar gel
structure to commercial soy yoghurt.info:eu-repo/semantics/publishedVersio
- …
