33 research outputs found
The Lake Baikal neutrino experiment
We rewiew the present status of the Baikal Neutrino Project and present the
results of a search for high energy neutrinos with the detector intermediate
stage NT-96.Comment: 3 pages, 2 figures, to appear in the Proceedings of Sixth
International Workshop on Topics in Astroparticle and Underground Physics
(TAUP99), September 6-10, 1999, Pais, Franc
The AMANDA Neutrino Telescope
With an effective telescope area of order m for TeV neutrinos, a
threshold near 50 GeV and a pointing accuracy of 2.5 degrees per muon
track, the AMANDA detector represents the first of a new generation of high
energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We
describe early results on the calibration of natural deep ice as a particle
detector as well as on AMANDA's performance as a neutrino telescope.Comment: 12 pages, Latex2.09, uses espcrc2.sty and epsf.sty, 13 postscript
files included. Talk presented at the 18th International Conference on
Neutrino Physics and Astrophysics (Neutrino 98), Takayama, Japan, June 199
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
IceCube - the next generation neutrino telescope at the South Pole
IceCube is a large neutrino telescope of the next generation to be
constructed in the Antarctic Ice Sheet near the South Pole. We present the
conceptual design and the sensitivity of the IceCube detector to predicted
fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete
simulation of the detector design has been used to study the detector's
capability to search for neutrinos from sources such as active galaxies, and
gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth
International Conference on Neutrino Physics and Astrophysics, Munich 200
Results from the Antarctic Muon and Neutrino Detector Array (AMANDA)
We show new results from both the older and newer incarnations of AMANDA
(AMANDA-B10 and AMANDA-II, respectively). These results demonstrate that AMANDA
is a functioning, multipurpose detector with significant physics and
astrophysics reach. They include a new higher-statistics measurement of the
atmospheric muon neutrino flux and preliminary results from searches for a
variety of sources of ultrahigh energy neutrinos: generic point sources,
gamma-ray bursters and diffuse sources producing muons in the detector, and
diffuse sources producing electromagnetic or hadronic showers in or near the
detector.Comment: Invited talk at the XXth International Conference on Neutrino Physics
and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 200
Muon Track Reconstruction and Data Selection Techniques in AMANDA
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy
neutrino telescope operating at the geographic South Pole. It is a lattice of
photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m.
The primary goal of this detector is to discover astrophysical sources of high
energy neutrinos. A high-energy muon neutrino coming through the earth from the
Northern Hemisphere can be identified by the secondary muon moving upward
through the detector. The muon tracks are reconstructed with a maximum
likelihood method. It models the arrival times and amplitudes of Cherenkov
photons registered by the photo-multipliers. This paper describes the different
methods of reconstruction, which have been successfully implemented within
AMANDA. Strategies for optimizing the reconstruction performance and rejecting
background are presented. For a typical analysis procedure the direction of
tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Simultaneous measurements of water optical properties by AC9 transmissometer and ASP-15 Inherent Optical Properties meter in Lake Baikal
Measurements of optical properties in media enclosing Cherenkov neutrino
telescopes are important not only at the moment of the selection of an adequate
site, but also for the continuous characterization of the medium as a function
of time. Over the two last decades, the Baikal collaboration has been measuring
the optical properties of the deep water in Lake Baikal (Siberia) where, since
April 1998, the neutrino telescope NT-200 is in operation. Measurements have
been made with custom devices. The NEMO Collaboration, aiming at the
construction of a km3 Cherenkov neutrino detector in the Mediterranean Sea, has
developed an experimental setup for the measurement of oceanographic and
optical properties of deep sea water. This setup is based on a commercial
transmissometer. During a joint campaign of the two collaborations in March and
April 2001, light absorption, scattering and attenuation in water have been
measured. The results are compatible with previous ones reported by the Baikal
Collaboration and show convincing agreement between the two experimental
techniques.Comment: 16 pages, submitted to NIM-