128 research outputs found

    Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters

    Get PDF
    We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 3 and 10 d with new leaves that developed at 5 degrees C with control leaves on plants at 23 degrees C. At 23 degrees C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 degrees C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.info:eu-repo/semantics/publishedVersio

    Multi-GeV Electron Spectrometer

    Full text link
    The advance in laser plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular the upcoming experiments with the FLAME laser at LNF will enter the GeV regime with almost 1pC of electrons. From the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need to develop a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV) under still unknown angular divergences. Within the PlasmonX experiment at LNF a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence present unprecedented challenges in the design and construction of such a device. We will present the design considerations for this spectrometer and the first results from a prototype.Comment: 7 pages, 6 figures, submitted to NIM

    PRIMA1 mutation: A new cause of nocturnal frontal lobe epilepsy

    Get PDF
    Objective Nocturnal frontal lobe epilepsy (NFLE) can be sporadic or autosomal dominant; some families have nicotinic acetylcholine receptor subunit mutations. We report a novel autosomal recessive phenotype in a single family and identify the causative gene. Methods Whole exome sequencing data was used to map the family, thereby narrowing exome search space, and then to identify the mutation. Results Linkage analysis using exome sequence data from two affected and two unaffected subjects showed homozygous linkage peaks on chromosomes 7, 8, 13, and 14 with maximum LOD scores between 1.5 and 1.93. Exome variant filtering under these peaks revealed that the affected siblings were homozygous for a novel splice site mutation (c.93+2T>C) in the PRIMA1 gene on chromosome 14. No additional PRIMA1 mutations were found in 300 other NFLE cases. The c.93+2T>C mutation was shown to lead to skipping of the first coding exon of the PRIMA1 mRNA using a minigene system. Interpretation PRIMA1 is a transmembrane protein that anchors acetylcholinesterase (AChE), an enzyme hydrolyzing acetycholine, to membrane rafts of neurons. PRiMA knockout mice have reduction of AChE and accumulation of acetylcholine at the synapse; our minigene analysis suggests that the c.93+2T>C mutation leads to knockout of PRIMA1. Mutations with gain of function effects in acetylcholine receptor subunits cause autosomal dominant NFLE. Thus, enhanced cholinergic responses are the likely cause of the severe NFLE and intellectual disability segregating in this family, representing the first recessive case to be reported and the first PRIMA1 mutation implicated in disease

    Molecular and Historical Aspects of Corn Belt Dent Diversity

    Get PDF
    Tens-of-thousands of open-pollinated cultivars of corn (Zea mays L.) are being maintained in germplasm banks. Knowledge of the amount and distribution of genetic variation within and among accessions can aid end users in choosing among them. We estimated molecular genetic variation and looked for influences of pedigree, adaptation, and migration in the genetic makeup of conserved Corn-Belt Dent-related germplasm. Plants sampled from 57 accessions representing Corn-Belt Dents, Northern Flints, Southern Dents, plus 12 public inbreds, were genotyped at 20 simple sequence repeat (SSR) loci. For 47 of the accessions, between 5 and 23 plants per accession were genotyped (mean = 9.3). Mean number of alleles per locus was 6.5 overall, 3.17 within accessions, and 3.20 within pooled inbreds. Mean gene diversity was 0.53 within accessions and 0.61 within pooled inbreds. Open-pollinated accessions showed a tendency toward inbreeding (FIS = 0.09), and 85% of genetic variation was shared among them. A Fitch-Margoliash tree strongly supported the distinctiveness of flint from dent germplasm but did not otherwise reveal evidence of genetic structure. Mantel tests revealed significant correlations between genetic distance and geographical (r = 0.54, P= 0.04) or maturity zone (r = 0.33, P = 0.03) distance only if flint germplasm was included in the analyses. A significant correlation (r = 0.76, P \u3c 0.01) was found between days to pollen shed and maturity zone of accession origin. Pedigree, rather than migration or selection, has most influenced the genetic structure of the extant representatives of the open-pollinated cultivars at these SSR loci

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Economy and environment of Bronze Age settlements - Terramaras - on the Po Plain (Northern Italy): first results from the archaeobotanical research at the Terramara di Montale

    No full text
    The paper presents a synthesis of the on-site archaeobotanical investigations of the Terramara di Montale, one of the most important sites of the Terramara cultural system which characterised the Po Plain in the Middle-Late Bronze Age (1650–1200 b.c.). Samples for pollen analysis and macroremains, including seed/fruit and wood/charcoal records, were collected from stratigraphic sequences and occupation levels during the excavations 1996–2001. The results permitted the reconstruction of the main characteristics of the landscape which at the onset of the Terramara rapidly passed from a natural, more forested landscape with mixed oak wood and conifers to a more open and anthropic landscape characterised by cereal fields, pastures and meadows. People felled oaks and other trees such as Populus/Salix and Fraxinus to make piles or walls for houses. Wood from these species was also recorded as charcoal in the hearths. Palynological and carpological data show that the inhabitants of the Terramara largely founded their economy on cereals (mainly Triticum aestivum/durum, T. dicoccum and Hordeum vulgare). They also grew a few legumes (Vicia faba var. minor, Vicia sp. and Lens culinaris). There was also grazing by domestic animals, mainly ovicaprines but also pigs and cattle, and these were fed exploiting wild plants such as Carpinus. In the paper the four main steps of the history of the Terramara are described (before the Terramara, the onset, the Terramara phase, the decline) during which both human influence and climatic changes were important. At the onset of the Terramara (around 1600 b.c.) a warm and possibly dry phase occurred. The intense use of the territory and a climatic deterioration at around 1300 b.c. might have triggered the decline of the Terramara di Montale

    Perfil proteômico e metabólico de piper tuberculatum (Piperaceae)

    Get PDF
    Piper tuberculatum (Piperaceae) is a species that accumulates especially amides as secondary metabolites and several biological activities was previously reported. In this article, we report a proteomic study of P. tuberculatum. Bidimensional electrophoresis (2D SDS-PAGE) and mass spectrometry (ESI-Q-TOF) were used in this study. Over a hundred spots and various peptides were identified in this species and the putative functions of these peptides related to defense mechanism as biotic and abiotic stress were assigned. The information presented extend the range of molecular information of P. tuberculatum.Fil: Cotinguiba, F.. Universidade Federal do Rio de Janeiro; Brasil. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: López, Silvia Noelí. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Orgánica. Área Farmacognosia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Budzinski, I. G. F.. Universidade de Sao Paulo; BrasilFil: Labate, C.A.. Universidade de Sao Paulo; BrasilFil: Kato, M. J.. Universidade de Sao Paulo; BrasilFil: Furlan, M.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi
    corecore