72 research outputs found
Photometric redshifts for the Kilo-Degree Survey. Machine-learning analysis with artificial neural networks
We present a machine-learning photometric redshift analysis of the
Kilo-Degree Survey Data Release 3, using two neural-network based techniques:
ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets,
these ML codes provide photo-zs of quality comparable to, if not better than,
those from the BPZ code, at least up to zphot<0.9 and r<23.5. At the bright end
of r<20, where very complete spectroscopic data overlapping with KiDS are
available, the performance of the ML photo-zs clearly surpasses that of BPZ,
currently the primary photo-z method for KiDS.
Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as
calibration, we furthermore study how photo-zs improve for bright sources when
photometric parameters additional to magnitudes are included in the photo-z
derivation, as well as when VIKING and WISE infrared bands are added. While the
fiducial four-band ugri setup gives a photo-z bias and scatter
at mean z = 0.23, combining magnitudes, colours, and galaxy
sizes reduces the scatter by ~7% and the bias by an order of magnitude. Once
the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12
, the scatter decreases by more than 10% over the fiducial case. Finally,
using the 12 bands together with optical colours and linear sizes gives and .
This paper also serves as a reference for two public photo-z catalogues
accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of
general purpose, includes all the 39 million KiDS sources with four-band ugri
measurements in DR3. The second dataset, optimized for low-redshift studies
such as galaxy-galaxy lensing, is limited to r<20, and provides photo-zs of
much better quality than in the full-depth case thanks to incorporating optical
magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.Comment: A&A, in press. Data available from the KiDS website
http://kids.strw.leidenuniv.nl/DR3/ml-photoz.php#annz
A global synthesis reveals biodiversity-mediated benefits for crop production
Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society. [Abstract copyright: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy
Background and aim: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. Methods: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. Results: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. Conclusions: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization
Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Unravelling the spirits’ message: a study of help-seeking steps and explanatory models among patients suffering from spirit possession in Uganda
As in many cultures, also in Uganda spirit possession is a common idiom of distress associated with traumatic experiences. In the DSM-IV and -5, possession trance disorders can be classified as dissociative disorders. Dissociation in Western countries is associated with complicated, time-consuming and costly therapies. Patients with spirit possession in SW Uganda, however, often report partial or full recovery after treatment by traditional healers. The aim of this study is to explore how the development of symptoms concomitant help-seeking steps, and explanatory models (EM) eventually contributed to healing of patients with spirit possession in SW Uganda. Illness narratives of 119 patients with spirit possession referred by traditional healers were analysed using a mixed-method approach. Treatments of two-thirds of the patients were unsuccessful when first seeking help in the medical sector. Their initially physical symptoms subsequently developed into dissociative possession symptoms. After an average of two help-seeking steps, patients reached a healing place where 99% of them found satisfactory EM and effective healing. During healing sessions, possessing agents were summoned to identify themselves and underlying problems were addressed. Often-mentioned explanations were the following: neglect of rituals and of responsibilities towards relatives and inheritance, the call to become a healer, witchcraft, grief, and land conflicts. The results demonstrate that traditional healing processes of spirit possession can play a role in restoring connections with the supra-, inter-, intra-, and extra-human worlds. It does not always seem necessary to address individual traumatic experiences per se, which is in line with other research in this field. The study leads to additional perspectives on treatment of trauma-related dissociation in Western countries and on developing effective mental health services in low -and middle-income countries
A saturated map of common genetic variants associated with human height.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
Lipase active site covalent anchoring of Rh(NHC) catalysts: Towards chemoselective artificial metalloenzymes
A Rh(NHC) phosphonate complex reacts with the lipases cutinase and Candida antarctica lipase B resulting in the first (soluble) artificial metalloenzymes formed by covalent active site-directed hybridization. When compared to unsupported complexes, these new robust hybrids show enhanced chemoselectivity in the (competitive) hydrogenation of olefins over ketones. This journal i
Comprehension Effects of Connectives Across Texts, Readers, and Coherence Relations
Studies investigating the effect of connectives on comprehension have yielded different results, most likely because of differences in methodology and limited samples of texts and readers. We added and removed causal, temporal, contrastive, and additive connectives in 20 authentic Dutch texts. Dutch adolescents (n = 794) differing in reading proficiency filled out four “HyTeC” cloze tests. Connectives were found to affect comprehension on a local level but not on a global level. However, a post-hoc analysis revealed a global comprehension effect for difficult texts but not for easy texts. Local effects were predominantly carried by the difficult texts as well. The direction of the effect did not vary between reading proficiency or readers’ educational level but did vary between types of coherence relations. Contrastive and causal connectives increased comprehension, whereas additive connectives reduced comprehension. Our large-scale study shows that effects of connectives on text comprehension are consistent between readers but not between texts and types of coherence relations
- …