129 research outputs found

    Exploring the realm of scaled Solar System analogs with HARPS

    Get PDF
    The assessment of the frequency of planetary systems reproducing the Solar System's architecture is still an open problem. Detailed study of multiplicity and architecture is generally hampered by limitations in quality, temporal extension and observing strategy, causing difficulties in detecting low-mass inner planets in the presence of outer giant planetary bodies. We present the results of high-cadence and high-precision HARPS observations on 20 solar-type stars known to host a single long-period giant planet in order to search for additional inner companions and estimate the occurence rate fpf_p of scaled Solar System analogs, i.e. systems featuring lower-mass inner planets in the presence of long-period giant planets. We carry out combined fits of our HARPS data with literature radial velocities using differential evolution MCMC to refine the literature orbital solutions and search for additional inner planets. We then derive the survey detection limits to provide preliminary estimates of fpf_p. We generally find better constrained orbital parameters for the known planets than those found in the literature. While no additional inner planet is detected, we find evidence for previously unreported long-period massive companions in systems HD 50499 and HD 73267. We finally estimate the frequency of inner low mass (10-30 M_\oplus) planets in the presence of outer giant planets as fp<9.84%f_p<9.84\% for P<150 days. Our preliminary estimate of fpf_p is significantly lower than the values found in the literature; the lack of inner candidate planets found in our sample can also be seen as evidence corroborating the inward migration formation model for super-Earths and mini-Neptunes. Our results also underline the need for high-cadence and high-precision follow-up observations as the key to precisely determine the occurence of Solar System analogs.Comment: 32 pages, 27 figures, accepted for publication in A&

    A High-Contrast Search for Variability in HR 8799bc with VLT-SPHERE

    Get PDF
    The planets HR8799bc display nearly identical colours and spectra as variable young exoplanet analogues such as VHS 1256-1257ABb and PSO J318.5-22, and are likely to be similarly variable. Here we present results from a 5-epoch SPHERE IRDIS broadband-HH search for variability in these two planets. HR 8799b aperture photometry and HR 8799bc negative simulated planet photometry share similar trends within uncertainties. Satellite spot lightcurves share the same trends as the planet lightcurves in the August 2018 epochs, but diverge in the October 2017 epochs. We consider Δ(mag)bΔ(mag)c\Delta(mag)_{b} - \Delta(mag)_{c} to trace non-shared variations between the two planets, and rule out non-shared variability in Δ(mag)bΔ(mag)c\Delta(mag)_{b} - \Delta(mag)_{c} to the 10-20%\% level over 4-5 hours. To quantify our sensitivity to variability, we simulate variable lightcurves by inserting and retrieving a suite of simulated planets at similar radii from the star as HR 8799bc, but offset in position angle. For HR 8799b, for periods 5%5\%. For HR 8799c, our sensitivity is limited to variability >25%>25\% for similar periods.Comment: 41 pages, 24 figures, accepted to MNRA

    Investigating point sources in MWC 758 with SPHERE

    Get PDF
    Context. Spiral arms in protoplanetary disks could be shown to be the manifestation of density waves launched by protoplanets and propagating in the gaseous component of the disk. At least two point sources have been identified in the L band in the MWC 758 system as planetary mass object candidates. Aims. We used VLT/SPHERE to search for counterparts of these candidates in the H and K bands, and to characterize the morphology of the spiral arms . Methods. The data were processed with now-standard techniques in high-contrast imaging to determine the limits of detection, and to compare them to the luminosity derived from L band observations. Results. In considering the evolutionary, atmospheric, and opacity models we were not able to confirm the two former detections of point sources performed in the L band. In addition, the analysis of the spiral arms from a dynamical point of view does not support the hypothesis that these candidates comprise the origin of the spirals. Conclusions. Deeper observations and longer timescales will be required to identify the actual source of the spiral arms in MWC 758.Comment: Accepted for publication in Astronomy and Astrophysic

    Direct Discovery of the Inner Exoplanet in the Hd 206893 System: Evidence for Deuterium Burning in a Planetary-Mass Companion

    Get PDF
    Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ~ 10 au. Long-Term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ~ 50-100 µarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7+1.21.0 {+1.2}_{-1.0} MJup and an orbital separation of 3.53+0.080.06 {+0.08}_{-0.06} au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a hybrid sequence (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-Term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2-4 au

    In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio

    TOI-179: a young system with a transiting compact Neptune-mass planet and a low-mass companion in outer orbit

    Full text link
    Transiting planets around young stars are key benchmarks for our understanding of planetary systems. One of such candidates was identified around the K dwarf HD 18599 by TESS, labeled as TOI-179. We present the confirmation of the transiting planet and the characterization of the host star and of the TOI-179 system over a broad range of angular separations. To this aim, we exploited the TESS photometric time series, intensive radial velocity monitoring performed with HARPS, and deep high-contrast imaging observations obtained with SPHERE and NACO at VLT. The inclusion of Gaussian processes regression analysis is effective to properly model the magnetic activity of the star and identify the Keplerian signature of the transiting planet. The star, with an age of 400+-100 Myr, is orbited by a transiting planet with period 4.137436 days, mass 24+-7 Mearth, radius 2.62 (+0.15-0.12) Rearth, and significant eccentricity (0.34 (+0.07-0.09)). Adaptive optics observations identified a low-mass companion at the boundary between brown dwarfs and very low mass stars (mass derived from luminosity 83 (+4-6) Mjup) at a very small projected separation (84.5 mas, 3.3 au at the distance of the star). Coupling the imaging detection with the long-term radial velocity trend and the astrometric signature, we constrained the orbit of the low mass companion, identifying two families of possible orbital solutions. The TOI-179 system represents a high-merit laboratory for our understanding of the physical evolution of planets and other low-mass objects and of how the planet properties are influenced by dynamical effects and interactions with the parent star.Comment: 25 pages, 24 figures, A&A, in pres
    corecore