2,622 research outputs found

    Mathematical modeling of the dynamic mechanical behavior of neighboring sarcomeres in actin stress fibers

    Get PDF
    pre-printActin stress fibers (SFs) in live cells consist of series of dynamic individual sarcomeric units. Within a group of consecutive SF sarcomeres, individual sarcomeres can spontaneously shorten or lengthen without changing the overall length of this group, but the underlying mechanism is unclear. We used a computational model to test our hypothesis that this dynamic behavior is inherent to the heterogeneous mechanical properties of the sarcomeres and the cytoplasmic viscosity. Each sarcomere was modeled as a discrete element consisting of an elastic spring, a viscous dashpot and an active contractile unit all connected in parallel, and experiences forces as a result of actin filament elastic stiffness, myosin II contractility, internal viscoelasticity, or cytoplasmic drag. When all four types of forces are considered, the simulated dynamic behavior closely resembles the experimental observations, which include a low-frequency fluctuation in individual sarcomere length and compensatory lengthening and shortening of adjacent sarcomeres. Our results suggest that heterogeneous stiffness and viscoelasticity of actin fibers, heterogeneous myosin II contractility, and the cytoplasmic drag are sufficient to cause spontaneous fluctuations in SF sarcomere length. Our results shed new light to the dynamic behavior of SF and help design experiments to further our understanding of SF dynamics

    Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts

    Full text link
    Future extragalactic sub-millimetre and millimetre surveys have the potential to provide a sensitive census of the level of obscured star formation in galaxies at all redshifts. While in general there is good agreement between the source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of different depths and areas, it remains difficult to determine the redshift distribution and bolometric luminosities of the sub-millimetre and millimetre galaxy population. This is principally due to the ambiguity in identifying an individual sub-millimetre source with its optical, IR or radio counterpart which, in turn, prevents a confident measurement of the spectroscopic redshift. Additionally, the lack of data measuring the rest-frame FIR spectral peak of the sub-millimetre galaxies gives rise to poor constraints on their rest-frame FIR luminosities and star formation rates. In this paper we describe Monte-Carlo simulations of ground-based, balloon-borne and satellite sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre spectral energy distributions (250-850um) can be used to derive photometric redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This opportunity to break the redshift deadlock will provide an estimate of the global star formation history for luminous optically-obscured galaxies [L(FIR) > 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted versio

    The NASA Auralization Framework and Plugin Architecture

    Get PDF
    NASA has a long history of investigating human response to aircraft flyover noise and in recent years has developed a capability to fully auralize the noise of aircraft during their design. This capability is particularly useful for unconventional designs with noise signatures significantly different from the current fleet. To that end, a flexible software architecture has been developed to facilitate rapid integration of new simulation techniques for noise source synthesis and propagation, and to foster collaboration amongst researchers through a common releasable code base. The NASA Auralization Framework (NAF) is a skeletal framework written in C++ with basic functionalities and a plugin architecture that allows users to mix and match NAF capabilities with their own methods through the development and use of dynamically linked libraries. This paper presents the NAF software architecture and discusses several advanced auralization techniques that have been implemented as plugins to the framework

    SANEPIC: A Map-Making Method for Timestream Data From Large Arrays

    Get PDF
    We describe a map-making method which we have developed for the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our method uses a Maximum Likelihood based approach, with several approximations, which allows images to be constructed using large amounts of data with fairly modest computer memory and processing requirements. This new approach, Signal And Noise Estimation Procedure Including Correlations (SANEPIC), builds upon several previous methods, but focuses specifically on the regime where there is a large number of detectors sampling the same map of the sky, and explicitly allowing for the the possibility of strong correlations between the detector timestreams. We provide real and simulated examples of how well this method performs compared with more simplistic map-makers based on filtering. We discuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance matrix is computed; and an iterative approach, which is much more efficient for large maps. SANEPIC has been successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related results available at http://blastexperiment.info/ [the BLAST Webpage

    Diminished temperature and vegetation seasonality over northern high latitudes

    Get PDF
    Global temperature is increasing, especially over northern lands (>50° N), owing to positive feedbacks1. As this increase is most pronounced in winter, temperature seasonality (ST)—conventionally defined as the difference between summer and winter temperatures—is diminishing over time2, a phenomenon that is analogous to its equatorward decline at an annual scale. The initiation, termination and performance of vegetation photosynthetic activity are tied to threshold temperatures3. Trends in the timing of these thresholds and cumulative temperatures above them may alter vegetation productivity, or modify vegetation seasonality (SV), over time. The relationship between ST and SV is critically examined here with newly improved ground and satellite data sets. The observed diminishment of ST and SV is equivalent to 4° and 7° (5° and 6°) latitudinal shift equatorward during the past 30 years in the Arctic (boreal) region. Analysis of simulations from 17 state-of-the-art climate models4 indicates an additional STdiminishment equivalent to a 20° equatorward shift could occur this century. How SV will change in response to such large projected ST declines and the impact this will have on ecosystem services5 are not well understood. Hence the need for continued monitoring6 of northern lands as their seasonal temperature profiles evolve to resemble thosefurther south.Lopullinen vertaisarvioitu käsikirjoitu

    Measuring star formation in high-z massive galaxies: A mid-infrared to submillimeter study of the GOODS NICMOS Survey sample

    Get PDF
    We present measurements of the mean mid-infrared-to-submillimeter flux densities of massive (M\ast \approx 2 \times 10^11 Msun) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalog on maps: at 24 {\mu}m (Spitzer/MIPS); 70, 100, and 160{\mu}m (Herschel/PACS); 250, 350, 500{\mu}m (BLAST); and 870{\mu}m (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star-formation rate of SFR = 63 [48, 81] Msun yr^-1 . We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disk-like and spheroid-like, according to their Sersic indices, n. We find evidence that most of the star formation is occurring in n \leq 2 (disk-like) galaxies, with median [interquartile] SFR = 122 [100,150] Msun yr^-1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14 [9,20] Msun yr^-1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.Comment: Accepted by MNRAS. 10 pages, 3 figures, 3 table

    A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2

    Full text link
    SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built. This 43 square arc-minute field-of-view instrument operates at two wavelengths (850 and 450 microns) and has been installed on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and operational for general science since October 2011. This paper presents an overview of the on-sky performance of the instrument during and since commissioning in mid-2011. The on-sky noise characteristics and NEPs of the 450 and 850 micron arrays, with average yields of approximately 3400 bolometers at each wavelength, will be shown. The observing modes of the instrument and the on-sky calibration techniques are described. The culmination of these efforts has resulted in a scientifically powerful mapping camera with sensitivities that allow a square degree of sky to be mapped to 10 mJy/beam rms at 850 micron in 2 hours and 60 mJy/beam rms at 450 micron in 5 hours in the best weather.Comment: 18 pages, 15 figures.SPIE Conference series 8452, Millimetre, Submillimetre and Far-infrared Detectors and Instrumentation for Astronomy VI 201

    BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths

    Get PDF
    We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are available at http://blastexperiment.info

    BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs

    Get PDF
    We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs available at http://blastexperiment.info

    Submillimeter Number Counts From Statistical Analysis of BLAST Maps

    Full text link
    We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyse BLAST observations of a roughly 10 sq. deg. map centered on the Great Observatories Origins Deep Survey South (GOODS-S) field. We provide estimates of number counts at the three BLAST wavelengths, 250, 350, and 500 microns; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power-laws. We observe a generally very steep slope for the counts of about -3.7 at 250 microns and -4.5 at 350 and 500 microns, over the range ~0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well-suited for analysis of data from the Herschel satellite.Comment: Accepted for publication in the Astrophysical Journal; see associated data and other papers at http://blastexperiment.info
    • …
    corecore