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NASA has a long history of investigating human response to aircraft flyover noise and in 
recent years has developed a capability to fully auralize the noise of aircraft during their 
design.  This capability is particularly useful for unconventional designs with noise 
signatures significantly different from the current fleet.  To that end, a flexible software 
architecture has been developed to facilitate rapid integration of new simulation techniques 
for noise source synthesis and propagation, and to foster collaboration amongst researchers 
through a common releasable code base.  The NASA Auralization Framework (NAF) is a 
skeletal framework written in C++ with basic functionalities and a plugin architecture that 
allows users to mix and match NAF capabilities with their own methods through the 
development and use of dynamically linked libraries.  This paper presents the NAF software 
architecture and discusses several advanced auralization techniques that have been 
implemented as plugins to the framework. 
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1 INTRODUCTION 

For over a decade, NASA-developed software has been used for the auralization of aircraft 
flyover noise.  The software was built around a source-path-receiver paradigm.  The Aircraft 
Source Noise Generator (ASoNG)1 code was developed to synthesize source noise based on some 
prescribed definition. The Community Noise Test Environment (CNoTE)1 suite of codes was 
developed to propagate the sound to a receiver based on physical models of the propagation path 
and receiver.  The models produce a set of time-varying gains, time-delays, and filters (GTF).  
CNoTE utilizes the AuSIM3D2 real-time digital signal processing (DSP) engine to apply the 
prescribed GTF.  While this tool set was highly effective in generating sounds of present and future 
aircraft,3 its lack of modularity inhibited its integration with NASA’s Aircraft Noise Prediction 
Program (ANOPP2).4  In addition, some compromises had to be made in the propagation modeling 
to operate in the real-time engine, even when real-time operation was not required. 

This paper introduces the newly developed NASA Auralization Framework (NAF) which is 
intended to replace the synthesis and propagation path processes of ASoNG and CNoTE with a 
code base that is modular, extensible through a plugin system, and capable of operating in several 
host environments.  Real-time listener simulation will still be realized with the combination of 
CNoTE and the AuSIM3D engine. 

1.1 Framework Architecture 

The NAF is a collection of software modules with functions and data common to auralization.  
Since the initial implementation of the NAF is intended for the Microsoft Windows operating 
system (OS), the NAF modules come in the form of dynamic-link libraries (DLLs).  Future 
implementations of these modules will become available in other forms to support other operating 
systems.  Users of the NAF write their own application code, using the NAF Application 
Programming Interface (API).  Under the Windows OS, the NAF API allows users to access 
functions and/or data in one or more NAF DLLs by linking to the associated import libraries.  The 
application code is written in the user’s host environment, for example, a C++ executable or 
function call from MATLAB®.  The NAF code base itself is written in C++. 

The NAF consists of seven modules, as depicted in Figure 1.  Inasmuch as possible, functions 
and data common to a particular set of operations are grouped with a module.  There are two 
foundational modules; the NAFIPP and the NAFCore.  The NAFIPP is a custom subset of Intel® 
Integrated Performance Primitives (IPP) redistributable libraries for common signal processing 
functions, e.g., Fast Fourier Transform related functions.  The NAFIPP has no other dependencies.  
The NAFCore is dependent only on the NAFIPP, and contains common object definitions, 
containers, and functionality, e.g., sample interpolators needed for fractional delay lines.   

The five remaining modules are all dependent on the NAFCore (see Section 6), and some also 
depend on the NAFIPP. The NAFGTF depends on the AuSIM AuGTF engine.  Portions of the 
NAFScene, NAFPath, NAFSynth and NAFGTF modules are described in some detail in Sections 
2-5, respectively. The NAFScheduler module is a placeholder at this time; however, in future 
releases, it will coordinate the activities of the other modules, through management of threads and 
order of operations, and by providing some “glue code” for moving data between modules. 

Additionally, a system for developing, registering, and using plugins is implemented within 
the NAF.  This allows users to create their own modules, which can act as 1) plugins to the NAF 
modules, e.g., a curved path finder DLL called by the NAFPath DLL, 2) complete replacements 
of NAF modules, e.g., a new NAFScene module, or 3) a completely new module, e.g., a 
NAFListener module for binaural simulation.  It is through the NAF plugin system that users can 



augment the skeletal framework of the NAF with more advanced capabilities.  The plugin system 
is further described in Section 7.  Finally, a typical use case is described in Section 8. 

 

Figure 1 – Depiction of the NAF architecture. 

2 SCENE MODULE 

The NAF is intended to operate as a time simulation model using discretized information that 
generally includes time-stamped source and receiver position and orientation, source operating 
conditions (e.g., engine throttle setting), time-dependent path information, etc.  It is the function 
of the NAFScene module to update these at each simulation time step, so that this information can 
be used in subsequent modules. 

The built-in method for updating the parameters is via linear interpolation between the 
previous condition and the next condition.  The current implementation assumes that source and 
receiver trajectories are known for all time at the start of the simulation.  If either the source or 
receiver trajectories are not known a priori, then the built-in method must be replaced with a user-
specified method using a model plugin. 

3 PATH MODULE 

The path module performs two primary functions: path finding and path traversal.  While the 
path traversal operations rely on path finding, separating these two functions offers the potential 
for parallel computing, as will be described in Section 8, and for clean separation of plugins. 

3.1 Path Finding 

The path finding process produces essentially three pieces of information needed in 
subsequent processes.  These are the source emission angles, the receiver angles, and the path 
itself.  The source emission angles are used in source noise synthesis (see Section 4), the receiver 
angles are optionally used in listener simulation, and the path (defined by at least two time-stamped 
points) is used in the path traversal process (see Section 3.2). 

Two approaches to path finding are possible: one that originates at the source and one that 
originates at the receiver.  The approach that starts at the source may be acausal because the future 



location of the receiver is not generally known, unless specified for all time at the start of the 
simulation.  The approach that starts at the receiver is always causal because the past position of 
the source is known.  Historically, NASA has used the first approach under the condition that the 
receiver location is fixed for all time.  The NAF is intended to support a moving receiver.  This is 
most readily accomplished by a path finding approach that starts at the receiver.  If instead the 
approach starts at the source, it would necessitate either that the receiver position be known a 
priori, or that some other approach, e.g., predictor-corrector, be taken to establish the future 
receiver position. 

At each scene update, all paths between the source and receiver are calculated using 
knowledge of the current source and future receiver positions (or past source and current receiver 
positions), and a definition of the environment (atmosphere, terrain, and any other relevant 
information).  For a receiver near the ground, there are minimally two paths: a direct path and a 
ground reflected path.  Depending on the environment definition, they may be additional paths, 
e.g., downward refracting atmosphere, or additional reflections off of non-flat terrain or building 
structures. 

Built-in Path Finder Capabilities 

The built-in path finder in the NAF is a very simple straight-line method that starts at the 
moving source and ends at a fixed receiver.  The points returned by the built-in path finder for the 
direct path are the source and receiver positions.  The points returned for a reflected path are the 
source position, the ground reflection point, and the receiver position.  More sophisticated path 
finders, e.g., for a curved propagation path through a non-uniform atmosphere,5 or even hardware 
accelerated methods6 may be implemented through the NAF model plugin system. 

3.2 Path Traverser 

The function of the path traverser is to obtain a single gain, single time delay and list of filters 
(referred to as a “GTF-list”) associated with each path segment, defined by the list of points that 
are determined by the path finder.  Here, a segment is defined as a pair of consecutive path points.  
Hence, there are n-1 path segments for a path defined by n points.  The gain, time delay and filters 
are obtained from functions in the NAFCore (see Section 6). 

The complete traversal of a sound from the source emission position to the receiver position 
is thus represented by an ordered series of n-1 GTF-lists associated with the atmosphere segments 
and one GTF-list for each reflection.  Together these are referred to as a “GTF-series.”  There is 
one GTF-series per path, and each carries with it a time-stamp for its time of emission according 
to the global clock.  For computational efficiency, all GTF-lists within a particular GTF-series are 
collapsed (linear gains multiplied, time delay summed, and filters enumerated) to form a GTF-
series data structure having a single GTF-list prior to submission to the GTF processor (see Section 
5).  The time of reception is thus determined by the summed delay in the collapsed GTF-series.  
This approach is consistent with that used in the AuSIM3D engine. 

Finally, it is important not to overlook the fact that any change to the path, e.g., source or 
receiver movement, necessitates a reevaluation of the GTF-series.  The GTF-series serves as input 
to the GTF engine. 

Built-In Path Traverser Capabilities 

Two possible sources of GTFs are considered in the built-in path traversal: the propagation 
medium and the ground.  As an example, consider the direct and ground reflected paths obtained 



with the built-in path finder.  The direct path has a GTF-series composed of one GTF-list 
associated with the propagation medium alone, while the ground-reflected path has a GTF-series 
composed of three GTF-lists associated with the two propagation medium segments and one 
ground reflection.  The propagation medium for the direct path includes a gain (attenuation) 
obtained via spherical spreading, a time delay obtained by the segment length divided by the speed 
of sound, and an atmospheric absorption filter (see Section 6.1).  No GTF-series collapse is 
necessary for the direct path.  For the ground-reflected path, the GTF-series is initially composed 
of three GTF-lists.  The first GTF-list is associated with the propagation medium (gain, time delay, 
and atmospheric absorption) for the path segment between the source and the ground.  The second 
GTF-list is associated with the ground plane and includes the filter and possible delay 
compensation (see Section 6.2).  The third GTF-list is associated with the propagation medium 
(gain, time delay, and atmospheric absorption) for the path segment between the ground and the 
receiver.  The collapsed GTF-series includes the summed gain, time delay and a filter list 
composed of the two atmosphere segments and the ground.  Some additional efficiency can be 
gained by collapsing like-filters (e.g. the two atmospheric attenuation filters) in the frequency 
domain prior to conversion to individual finite impulse response (FIR) filters, since their sequential 
processing (see Section 5) effectively doubles the computational effort. 

Additional sources of GTFs, for example, transmission through structures, can be 
accommodated via user-written model plugins. 

4 SYNTHESIS MODULE 

In describing the synthesis module, it is useful to first introduce some terminology to describe 
a hierarchy of noise generators.  The lowest level noise generator is referred to as a noise 
component.  In a turbofan engine, for example, there are multiple noise components including 
forward and aft radiated fan tones, forward and aft radiated fan broadband, core noise and jet noise.  
In the NAF, if a component definition is specified independent of other components, it is 
synthesized independently.  For example, if the forward and aft radiated fan broadband 
components are combined, they are synthesized together, whereas if they are provided separately, 
they are synthesized separately.  A compound source, or simply a source, is one in which one or 
more components can be considered as compact and originating from the same point.  There are 
one or more unique paths between each source and receiver. 

At each scene update, the synthesis engines query the component models at their instantaneous 
operational state (defined by NAFScene) and emission angle (defined by the NAFPath path 
finder).  The component model returns its instantaneous noise definition.  That definition is used 
by the component’s synthesizer to generate a buffer of sound.  This buffer typically serves as input 
to the GTF processor.  The synthesis must be performed in such a way that the generated signal 
continuously evolves with changes in the noise definition.  The manner in which that is 
accomplished is dependent on source type, i.e., broadband, narrowband, tonal, or time domain.  If 
desired, components of the same source can be mixed together at the source position before being 
submitted for propagation processing. 

Finally note that the number of component synthesis engines running at a time is equal to the 
number of paths times the number of independently specified components. 

Built-In Synthesis Capabilities 

NAFSynth provides three rudimentary component synthesizers: a test-tone synthesizer, a 
random noise synthesizer, and a wavetable synthesizer.  The test-tone synthesis can generate a 



single constant tone at a user-specified frequency.  The random noise synthesis generates random 
samples out of a normal distribution with mean of 0 and standard deviation of 1.  Wavetable 
synthesis loads a waveform from a user-specified file, and returns a buffer’s worth of samples at 
each time step.  All three synthesizers are omnidirectional. 

NAFSynth provides two component models: a “null op” model and a directivity-file model.  
For some component synthesizers, like the rudimentary ones, the output does not depend on the 
operational state or emission angle, so an instantaneous noise definition is not necessary.  In such 
instances, the built-in null op component can be used.  To support the more complex component 
noise synthesizers incorporated in an advanced model plugin, NAFSynth provides a directivity-
file database component.  The directivity-file database component loads a series of directivity files 
and linearly interpolates over any specified independent variables as well as emission angles.  This 
model currently supports directivities defined by 1/3-octave band levels (for broadband noise) or 
frequency-amplitude tables (for pure-tonal noise).  If the loaded 1/3-octave band directivity file is 
Doppler shifted, the directivity-file component model will flag it for de-Dopplerization when it is 
later converted to a narrowband spectrum for synthesis, as indicated by Rizzi et al.3  Tonal data is 
typically provided at the non-Doppler shifted blade passage frequencies. 

Because users might want to load their own format directivity files, there is also plugin support 
specifically for directivity-file loaders.  A sample project that builds a plugin to read NetCDF7 
directivity files is included as part of the NAF. 

5 GTF MODULE 

The NAFGTF module is composed of the DSP elements needed to apply the collapsed GTF- 
series associated with a path to the source signal.  Most DSP theory is based on the assumption of 
linear time invariance (LTI).  LTI systems allow operations to be commutative and invertible.  As 
the scene is updated, any change in the path will violate this condition.  Fortunately, LTI can be 
approximated by treating the system in a piecewise (in time) fashion.  In practice, this entails 
sequential application of the buffered GTF-series over a number of source signal segments.  At 
each segment transition, the change in time delay, filter (color), and gain is extracted from buffered 
GTS-series.  The GTF processor applies these changes by first stretching/compressing the signal 
to accommodate the change in time, then smoothly adjusting the filter for change in coloration, 
and finally ramping the signal scale for the change in gain.  Since LTI is assumed within each 
segment, the filters in each GTF list could be convolved into a single filter.  However, the NAF 
keeps them as a succession of filters for the purpose of control. 

5.1 GTF Engine 

The GTF Engine, the top level object of the NAFGTF module, manages processing and 
memory resources for the digital signal processing core and serves as the interface to the rest of 
NAF.  The GTF Engine creates an instance of the licensed AuSIM AuGTF engine.  The AuGTF 
engine contains a dynamic list of GTF processors, each corresponding to a path in the simulation.  
When a GTF-series or synthesized signal block is submitted to the NAFGTF module, the GTF 
Engine ensures that a processor exists that corresponds to the path.  The GTF Engine cleans-up 
unused processors if a path dissolves. 

5.2 GTF Processing 

Every path corresponds to a dedicated processor object to keep track of signal state from one 
block of signal to the next and to support parallel processing between data-independent paths.  The 



inputs to a GTF-processor for each processing time slice are a block of signal from the synthesis 
engine and a GTF-series from the path traverser.  Upon submission, the block of signal is 
concatenated into a very long delay-line, while the GTF-series is submitted to a FIFO (first-in, 
first-out) queuing container.  When asked to process, the first-out GTF-series in the FIFO queuing 
container is examined for the amount of signal required to produce a block of output.  If enough 
signal exists in the delay-line, then the GTF-series is processed.  A multi-algorithm sample 
interpolator extracts the required samples by the ratio of previous delay to the new delay.  The 
samples are placed into a work buffer, where they are filtered in-place sequentially by the filter list 
of the collapsed GTF-series. The samples are scaled by the gain upon copy to an output buffer.  
The process is repeated until the end of the simulation.  This processing scenario is depicted in 
Figure 2. 

 

Figure 2 – Depiction of DSP operations in the NAF GTF engine. 

6 CORE MODULE 

As previously indicated, the NAFCore module is a container for common object definitions 
and functions.  Not all are enumerated here; however, two of those objects which specify the built-
in atmospheric absorption and ground plane impedance models are described below.  As described 
in Section 3, the path finder and path traverser receive environment information, including the 
atmosphere model and ground model, as part of their inputs.  Atmospheric models can 
independently return the speed of sound and the frequency response of the absorption along a path 
segment.  Ground models return the frequency response of the ground impedance.  The frequency 
responses are converted to FIR filters through a subsequent function call.  The path finder and path 
traverser make use of these capabilities to generate the path and calculate the GTF-series. 

6.1 Built-In Atmospheric Absorption 

NAFCore provides a definition for a uniform atmosphere between the source and receiver.  
Included in that definition is a constant speed of sound and an atmospheric absorption frequency 
response specified in dB/m and defined at each of an extended set of standard 1/3-octave center 
frequencies.  The speed of sound and absorption are pre-computed.  By default, absorption is 
provided for standard uniform atmosphere having a nominal temperature of 15°C, atmospheric 
pressure of 1 atm., and relative humidity of 50%.  This absorption was pre-computed using the 
methods embodied in the more versatile advanced model plugin, see Section 7.1.  Alternatively, 



users may define a custom atmosphere by supplying their own pre-computed speed of sound and 
atmospheric absorption.  This adds some flexibility by allowing the user to define the absorption 
over an arbitrary set of frequencies.  In either case, it is very expedient since it does not rely on a 
realization of a physical model during simulation. 

The NAF path traverser uses the returned speed of sound to determine the time delay for sound 
to propagate over the path length segment.   The NAF path traverser obtains the digital filter by 
multiplying the returned absorption frequency response by the propagation distance.  This distance 
may be the entire propagation path from source to receiver or a smaller segment of that path 
depending on how the path is defined.  The resulting total absorption over this distance is 
considered as the target frequency response for the filter design.  This data is curve fit with a 2n-
point spline, evaluated at narrowband frequency increments, and converted to a minimum-phase 
FIR filter via a real cepstrum.8 

6.2 Built-In Ground Plane Impedance 

The NAF provides a simple ground impedance model for simulating a hard ground.  A unity 
gain, zero time delay, and short “wire” FIR filter, e.g., [1, 0, 0, 0,], are returned to the path traverser 
for incorporation in its GTF-series. 

7 MODEL PLUGIN SYSTEM 

The NAF model plugin system allows users to extend the capabilities of the NAF by writing 
their code in the form of NAF plugins.  The NAF model plugin system takes advantage of the 
“abstract factory” and “factory method” software design patterns as described by Gamma et al.,9 
with an extensible interface suggested by Reddy10 for runtime registering of factory methods.  This 
allows NAF plugins to be accessed at run time, provided the plugins register their factory methods 
with the appropriate abstract factory. 

Users can create plugins to override default behavior for a number of NAF-defined classes.  
User plugins must provide a method that can create an object of their new class, i.e., their factory 
method, and register this method by name with an abstract factory.  In order to create an instance, 
the abstract factory need only be supplied with the name of the registered factory method. 

Abstract factories are provided for component noise models, synthesizers, atmospheric 
models, directivity-file loaders, one-dimensional interpolators, terrain models, as well as the full 
path finder and path traverser.  Plugins can have more than one factory method, and should register 
all their factory methods on loading. 

7.1 NASA Advanced Capability Plugins 

In addition to developing the framework, NASA has converted previously developed 
advanced capabilities for synthesis, atmospheric absorption and ground attenuation to NAF 
plugins.  These not only help verify the NAF implementation through comparison with the output 
from ASoNG and CNoTE, but also serve as a template for creating new techniques solely as NAF 
plugins. 

Advanced Synthesis Plugin 

Two different component synthesis engines are implemented in the NASA Advanced 
Synthesis Plugin: broadband and pure-tonal.  The broadband synthesis engine uses the same 
subtractive synthesis technique, employing overlap-add, as used in ASoNG.  It operates on the 



instantaneous spectrum provided by the directivity-file component model.  For brevity, the details 
are omitted (see Rizzi et al.1).  At the end of each processing block, the resulting overlapped and 
added buffer is appended to the large output buffer of previously synthesized samples.  Using this 
method, the broadband signal contained in that buffer can continuously evolve over time.  The 
pure-tonal synthesis engine uses an additive synthesis method, wherein each harmonic is phase-
tracked and interpolated in both frequency and amplitude on a per-sample basis to generate a signal 
that is contiguous across buffers and that continuously evolves over time to match the frequency 
and amplitudes specified by the directivity-file component model.  This is also the same synthesis 
technique that has been used previously in ASoNG.  A narrowband synthesis engine derived from 
the broadband engine is under development, as is the ability to apply low frequency oscillations 
(LFO) to any of the above.  These methods were also previously implemented in ASoNG. 

At this time, the directivity-file component model returns interpolations of a pre-computed 
directivity database to the synthesis engine.  These databases are generated in advance by a 
prediction tool, e.g. ANOPP2, and loaded at run time.  However, the NAF model plugin system 
provides the flexibility to either directly implement a component prediction model of its own, or 
query the ANOPP2 Observer object4 at each simulation step to provide the instantaneous source 
spectrum corresponding to the interpolated operational state and emission angle. 

Finally recall that the number of component synthesis engines running at a time is equal to 
the number of paths times the number of independently specified components. For example, a 
simulation of broadband nose-gear noise for a receiver near the ground would require two 
broadband synthesis engines: one for the direct path and one for the ground-reflected path.  Further, 
all synthesis engines associated with the same component are (currently) synthesized with the same 
random attributes, i.e., the same broadband phase for broadband components, and the same tonal 
phase for tonal components.  This works well in the above example when the two emission angles 
are very close together, and results in a direct path signal that (at the source) is coherent with the 
ground-reflected path signal.  However, when the emission angles are far apart, some other 
approach may be necessary. 

Advanced Atmosphere Plugin 

The Advanced Atmosphere Plugin is derived from the atmospheric absorption model plugin 
in CNoTE,8 which, in turn, is based on the ANSI standard atmospheric absorption model.11  
Operating in the same capacity as the built-in model (see Section 6.1), the plugin returns the speed 
of sound and absorption in dB/m evaluated at the 1/3-octave band center frequencies.  These are 
dependent on user-specified parameters of temperature, relative humidity, and pressure. 

A uniform atmosphere definition and two altitude-dependent atmosphere definitions, 
isothermal and lapse, are available.  For the uniform atmosphere definition, the same user-specified 
parameters are used at all points along the path.  For the isothermal atmosphere definition, the 
temperature and relative humidity remain constant, but the pressure varies hydrostatically with 
altitude.  Thus, the isothermal atmosphere generates an altitude-dependent atmospheric absorption, 
but an altitude-independent speed of sound.  For the lapse atmosphere definition, the lapse rate 
defines the variation of temperature with altitude. The pressure is taken to vary hydrostatically 
with altitude, and the relative humidity is held constant.  In this case, both the atmospheric 
absorption and the speed of sound are altitude-dependent.  Any speed of sound variation causes 
refraction and alters the sound propagation path,5 however that effect is decoupled from the 
Advanced Atmosphere Plugin.  A separate advanced plugin for the path finder is required to utilize 
that information for the generation of curved paths.  For any of the atmosphere definitions, the 
generation of the resulting FIR absorption filter follows the process described in Section 6.1. 



Advanced Ground Impedance Plugin 

Work is underway to port an advanced ground impedance plugin12 from CNoTE to a NAF 
plugin.  This CNoTE plugin allows specification of two different ground impedance models13, 14 
and optionally applies a spherical wave correction15 for low altitude sources. 

The process for obtaining its digital filter entails an inverse FFT of the complex reflection 
coefficient, followed by a circular shift in the time domain.  This process produces a linear phase 
FIR filter with its peak at the middle tap, so time delay compensation is required to synchronize 
the direct and ground reflected paths.12 

8 PUTTING IT ALL TOGETHER 

The NAF building blocks are assembled in a user-written code in a particular manner 
depending on its use.  One time step of a typical use case is depicted in Figure 3. 

 

Figure 3 – Block diagram of a typical use case for the NAF. Black connecting lines indicate data 
and red connecting lines indicate samples (audio). 

For each scene update, the path finder obtains the paths, emission angles and receiver angles 
for each source.  Since the NAF does not have a listener model, listener simulation would be 
performed off-line using CNoTE.  For each path, component synthesis engines generate sample 
buffers of pressure time history, which may optionally be summed back to the source level.  In 
parallel, the path traversers generate the collapsed GTF-series for the specified atmosphere and 
ground.  The GTF processor propagates the sound through application of the GTF-series to the 
sample buffer.  The output of all the paths for a given source are shown summed to generate a 
pseudo-recording at the receiver.  The summation of the direct and ground reflected paths create 
the comb-filtering effect previously noted.1, 3, 8  The future role of the NAFScheduler in managing 
the operation of the threaded component synthesis engines and path traversers is not shown. 

Note that the operations shown in Figure 3 are the same for both event-driven and clock-
driven processes.  In an event-driven process, the operations at each time step are processed for as 
long as they take to complete, and the result is pushed out at the end, presumably to a file.  In a 
clock-driven process, the scene update rate is determined at a prescribed interval, presumably by 
a real-time clock on a sound card or other output channel.  The operations are initiated, perhaps in 
a double-buffered scheme, and the output is pulled out when needed by the simulation, including 
gaps if processes are not finished.  The NAFScheduler would adjust thread parameters, buffer 



length, algorithm complexity, or other factors in real time to try to maintain throughput, but the 
operations are still completed in the same order for each scene update. 

9 NAF RELEASES 

There are three different NAF-related software releases: NAF-Dev, NAF-User, and NAF-
Plugins.  NAF-Dev is the developers’ version of NAF, and includes source code for building all 
the built-in modules described herein.  Developers are required to obtain licenses for two third-
party dependencies to build NAF-Dev: the Intel® IPP library and the AuSIM GTF SDK.  An 
optionally built NetCDF7 directivity loader requires linking to the NetCDF link libraries.  The 
NAF-Dev has been approved for general public release and is widely available through a NASA 
software usage agreement. 

NAF-User is a planned binary release of NAF, and will include link libraries, dynamically 
linked libraries, and the C++ header files necessary for building applications that use NAF.  NAF-
Plugins is a planned binary release of the NASA advanced plugins. 

10 DISCUSSION 

The NAF is a new software API that replaces a significant portion of the auralization 
capabilities previously provided by ASoNG and CNoTE.  It encompasses all processes required 
to generate a pseudo-recording given an acoustic definition of the source and description of the 
environment.  The pseudo-recording can separately be used with the listener modeling capabilities 
in CNoTE to create a virtual environment.  The NAF’s basic palette of built-in capabilities can be 
augmented through the NAF plugin system.  Advanced plugins for synthesis, atmospheric 
absorption and ground plane attenuation are NASA-written examples of this capability.  Together, 
the NAF API and its plugins allow users to write more integrated application code than was 
previously possible.  This will ultimately make auralization more readily available to users of noise 
prediction tools like ANOPP2 and the Advanced Acoustic Model.16 
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