224 research outputs found

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods

    Get PDF
    Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone

    Modulation of Wnt5a Expression by Periodontopathic Bacteria

    Get PDF
    Wingless proteins, termed Wnt, are involved in embryonic development, blood cell differentiation, and tumorigenesis. In mammalian hematopoiesis, Wnt signaling is essential for stem-cell homeostasis and lymphocyte differentiation. Recent studies have suggested that these molecules are associated with cardiovascular diseases, rheumatoid arthritis, and osteoarthritis. Furthermore, Wnt5a signaling is essential for the general inflammatory response of human macrophages. Periodontitis is a chronic inflammatory disease caused by gram-negative periodontopathic bacteria and the resultant host immune response. Periodontitis is characterized by loss of tooth-supporting structures and alveolar bone resorption. There have been no previous reports on Wnt5a expression in periodontitis tissue, and only few study reported the molecular mechanisms of Wnt5a expression in LPS-stimulated monocytic cells. Using RT-PCR, we demonstrated that Wnt5a mRNA expression was up-regulated in chronic periodontitis tissue as compared to healthy control tissue. P. gingivalis LPS induced Wnt5a mRNA in the human monocytic cell line THP-1 with a peak at 4 hrs after stimulation. P. gingivalis LPS induced higher up-regulation of Wnt5a mRNA than E. coli LPS. The LPS receptors TLR2 and TLR4 were equally expressed on the surface of THP-1 cells. P. gingivalis LPS induced IÎșBα degradation and was able to increase the NF-ÎșB binding activity to DNA. P. gingivalis LPS-induced Wnt5a expression was inhibited by NF-ÎșB inhibitors, suggesting NF-ÎșB involvement. Furthermore, IFN-Îł synergistically enhanced the P. gingivalis LPS-induced production of Wnt5a. Pharmacological investigation and siRNA experiments showed that STAT1 was important for P. gingivalis LPS-induced Wnt5a expression. These results suggest that the modulation of Wnt5a expression by P. gingivalis may play an important role in the periodontal inflammatory process and serve a target for the development of new therapies

    Time-dependent propagators for stochastic models of gene expression: an analytical method

    Get PDF
    The inherent stochasticity of gene expression in the context of regulatory networks profoundly influences the dynamics of the involved species. Mathematically speaking, the propagators which describe the evolution of such networks in time are typically defined as solutions of the corresponding chemical master equation (CME). However, it is not possible in general to obtain exact solutions to the CME in closed form, which is due largely to its high dimensionality. In the present article, we propose an analytical method for the efficient approximation of these propagators. We illustrate our method on the basis of two categories of stochastic models for gene expression that have been discussed in the literature. The requisite procedure consists of three steps: a probability-generating function is introduced which transforms the CME into (a system of) partial differential equations (PDEs); application of the method of characteristics then yields (a system of) ordinary differential equations (ODEs) which can be solved using dynamical systems techniques, giving closed-form expressions for the generating function; finally, propagator probabilities can be reconstructed numerically from these expressions via the Cauchy integral formula. The resulting ‘library’ of propagators lends itself naturally to implementation in a Bayesian parameter inference scheme, and can be generalised systematically to related categories of stochastic models beyond the ones considered here

    Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex

    Get PDF
    Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity [... however,] even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. [...] Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation.Comment: 49 pages, 11 figures, 7 table

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Comparison of body mass index with waist circumference and skinfold-based percent body fat in firefighters: adiposity classification and associations with cardiovascular disease risk factors

    Full text link
    PurposeThis study aims to examine whether body mass index (BMI) overestimates the prevalence of overweight or obese firefighters when compared to waist circumference (WC) and skinfold-based percent body fat (PBF) and to investigate differential relationships of the three adiposity measures with other biological cardiovascular disease (CVD) risk factors.MethodsThe adiposity of 355 (347 males and eight females) California firefighters was assessed using three different measures. Other CVD risk factors (high blood pressure, high lipid profiles, high glucose, and low VO2 max) of the firefighters were also clinically assessed.ResultsThe prevalence of total overweight and obesity was significantly (p < 0.01) higher by BMI (80.4 %) than by WC (48.7 %) and by PBF (55.6 %) in male firefighters. In particular, the prevalence of overweight firefighters was much higher (p < 0.01) by BMI (57.3 %) than by WC (24.5 %) and PBF (38.3 %). 60-64 % of male firefighters who were assessed as normal weight by WC and PBF were misclassified as overweight by BMI. When overweight by BMI was defined as 27.5-29.9 kg/m(2) (vs. the standard definition of 25.0-29.9 kg/m(2)), the agreement of the adiposity classification increased between BMI and other two adiposity measures. Obese firefighters had the highest CVD risk profiles across all three adiposity measures. Only when overweight by BMI was defined narrowly, overweight firefighters had substantially higher CVD risk profiles. Obesity and overweight were less prevalent in female and Asian male firefighters.ConclusionsBMI overestimated the prevalence of total overweight and obesity among male firefighters, compared to WC and skinfold-based PBF. Overweight by BMI needs to be more narrowly defined, or the prevalence of BMI-based overweight (27.5-29.9 kg/m(2)) should be reported additionally for prevention of CVD among male firefighters

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA Îłp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the ÎłA system of WÎłA,n=65 GeV is found to be consistent with a power-law behaviour σ(ÎłA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio
    • 

    corecore