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Abstract The inherent stochasticity of gene expression in the context of regulatory
networks profoundly influences the dynamics of the involved species. Mathematically
speaking, the propagators which describe the evolution of such networks in time are
typically defined as solutions of the corresponding chemical master equation (CME).
However, it is not possible in general to obtain exact solutions to the CME in closed
form, which is due largely to its high dimensionality. In the present article, we propose
an analytical method for the efficient approximation of these propagators.We illustrate
our method on the basis of two categories of stochastic models for gene expression
that have been discussed in the literature. The requisite procedure consists of three
steps: a probability-generating function is introduced which transforms the CME into
(a system of) partial differential equations (PDEs); application of the method of char-
acteristics then yields (a system of) ordinary differential equations (ODEs) which can
be solved using dynamical systems techniques, giving closed-form expressions for
the generating function; finally, propagator probabilities can be reconstructed numer-
ically from these expressions via the Cauchy integral formula. The resulting ‘library’
of propagators lends itself naturally to implementation in a Bayesian parameter infer-
ence scheme, and can be generalised systematically to related categories of stochastic
models beyond the ones considered here.
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1 Introduction

1.1 Motivation

Understanding the process of gene expression in the context of gene regulatory
networks is indispensable for gaining insight into the fundamentals of numerous bio-
logical processes. However, gene expression can be highly stochastic in nature, both in
prokaryotic and in eukaryotic organisms; see e.g. thework by Elowitz et al. (2002), Raj
and Oudenaarden (2008), Shahrezaei and Swain (2008b), and the references therein.
This inherent stochasticity has a profound influence on the dynamics of the involved
species, in particular when their abundance is low. Therefore, gene expression is often
appropriately described by stochastic models (Bressloff 2014; Karlebach and Shamir
2008; Thattai and Oudenaarden 2001; Wilkinson 2009). A schematic of the canonical
model for gene expression is depicted in Fig. 1. Here, the processes of transcription,
translation, and degradation are approximated by single rates.

To test the validity of such stochastic models, a comparison with experimental
data needs to be performed. The development of experimental techniques, such as
time-lapse fluorescence microscopy (Coutu and Schroeder 2013; Elowitz et al. 2002;
Larson et al. 2011;Muzzey andOudenaarden 2009; Raj et al. 2006; Young et al. 2011),
allows for real-time tracking of gene expression dynamics in single cells, providing
mRNA or protein abundance time series, such as those depicted in Fig. 2. To select
between competing hypotheses on the underlying regulatory networks given measure-
ment data, as well as to infer the values of the correspondingmodel parameters, we can
apply Bayesian inference theory to calculate the likelihood of a given model, which
is constructed as follows.

The abundance of a protein, denoted by n, is sampled at times ti , see Fig. 2, yielding
a list of measurement pairs (ti , ni ) from which transitions (�t, ni → ni+1) between
states can be extracted; here, �t = ti+1 − ti is the regular, fixed, sampling interval.

Fig. 1 The canonical model of gene expression. Transcription of mRNA occurs with rate ν0; mRNA is
translated to protein with rate ν1. Both mRNA and protein decay, with rates d0 and d1, respectively. Figure
courtesy of Shahrezaei and Swain (2008a) (Copyright (2008) National Academy of Sciences, U.S.A.)

123



Time-dependent propagators for stochastic models…

Fig. 2 Sketch of a potential time series of protein abundance n, sampled at times ti , with regular, fixed,
sampling interval �t

Next, the underlying stochastic model with parameter set � is used to calculate the
probabilities of these transitions, which are denoted by Pni+1|ni (�t). These so-called
propagators give the probability of ni+1 protein being present after time �t , given an
initial protein abundance of ni . The log-likelihood L(�|D) of the parameter set �,
given the observed data D, is now defined in terms of the propagators as

L(�|D) =
∑

i

log Pni+1|ni (�t). (1.1)

To infer the values of parameters in the model, propagators are calculated for a wide
range of parameter combinations, resulting in a ‘log-likelihood landscape’; the maxi-
mal value of the log-likelihood as a function of the model parameters yields the most
likely parameter values, given the experimental data. An example realisation of the
above procedure can e.g. be found in the work by Feigelman et al. (2015).

To calculate accurately the log-likelihood in (1.1), it is imperative that the values
of the propagators can be extracted from the underlying stochastic model for any
desired combination of parameters in �. In particular, we need to be able to calculate
the propagator Pn|n0(t) as a function of time t for any initial protein number n0.
Unfortunately, the highly complex nature of the stochastic models involved makes it
very difficult to obtain explicit expressions for these probabilities. Some analytical
progress can be made when a steady-state approximation is performed, i.e. when it
is assumed that the system is allowed to evolve for a sufficiently long time, such that
it converges to a time-independent state. However, the sampling interval �t used for
obtaining experimental data, as seen in Fig. 2, is often short with respect to the protein
life time. As that life time represents a natural time scale for the system dynamics,
it follows that the evolution of the probabilities Pn|n0(t) should be studied over short
times, in contradiction with the steady-state or long-evolution-time approximations
which have previously been employed to derive analytical results (Bokes et al. 2012a;
Hornos et al. 2005; Iyer-Biswas and Jayaprakash 2014; Shahrezaei and Swain 2008a).
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The complex nature of stochastic models for gene expression has led to the
widespread use of stochastic simulation techniques, such as Gillespie’s algorithm
(Gillespie 1977), with the aim of predicting values for the associated propagators
from these models; see Feigelman et al. (2016) for recent work combining stochastic
simulation with a particle filtering approach. However, these approaches can still be
very time-consuming, due to the (relatively) high dimensionality of the model param-
eter space, combined with the fact that, for each combination of parameter values, the
stochastic model has to be simulated sufficiently many times to yield a probability
distribution that can be used to infer the corresponding propagator. For that reason, it
is desirable to be able to obtain explicit expressions for the propagator Pn|n0(t) directly
in terms of the model parameters, if necessary in an appropriate approximation.

1.2 Analytical method

In the present article, we develop an analytical method for the efficient evaluation
of time-dependent propagators in stochastic gene expression models, for arbitrary
values of the model parameters. The results of our analysis can be implemented in
a straightforward fashion in a Bayesian parameter inference framework, as outlined
above.

To demonstrate our approach, we analyse two different stochastic models for gene
expression. The first model, henceforth referred to as ‘model A’, is a model that
incorporates autoregulation, where transcription and translation are approximated by
single rates and protein can either stimulate or inhibit its own production by influ-
encing the activity of DNA; see Fig. 3. That model was first studied by Iyer-Biswas
and Jayaprakash (2014) via a steady-state approximation. The second model, hence-
forth referred to as ‘model B’, models both mRNA and protein explicitly and again
incorporates DNA switching between an active and an inactive state; see Fig. 4. That
model was first studied by Shahrezaei and Swain (2008a) in a long-evolution-time
approximation.

Both model A and model B are formulated in terms of the chemical master equa-
tion (CME), which is the accepted mathematical representation of stochastic gene
expression in the context of the model categories considered here; cf. Iyer-Biswas and

Fig. 3 Schematic of model A, a gene expression model with autoregulation. Base figure courtesy of
Shahrezaei and Swain (2008a). (Copyright (2008) National Academy of Sciences, U.S.A.)
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Fig. 4 Schematic ofmodelB, a gene expressionmodel that explicitly incorporates transcription (Shahrezaei
and Swain 2008a). Figure courtesy of Shahrezaei and Swain (2008a). (Copyright (2008) National Academy
of Sciences, U.S.A.)

Jayaprakash (2014) and Shahrezaei and Swain (2008a), respectively. Mathematically
speaking, the CME is an infinite-dimensional system of linear ordinary differential
equations (ODEs) that describes the evolution in time of the probabilities of observing
a specific state in the system, given some initial state. Numerous approaches have
been suggested for the (approximate) solution of the CME; see e.g. Popović et al.
(2016) and the references therein for details. Our method relies on a combination of
various techniques from the theory of differential equations and dynamical systems;
specifically, we perform three consecutive steps, as follows.

1. CME system → PDE system: We introduce a probability-generating function to
convert the CME into a (system of) partial differential equations (PDEs).

2. PDE system → ODE system: Applying the method of characteristics—
combined, if necessary, with perturbation techniques—we transform the system
of PDEs obtained in step 1 into a dynamical system, that is, a system of ODEs.

3. ODE system → Explicit solution: Making use of either special functions (model
A) or multiple-time-scale analysis (model B), we obtain explicit solutions to the
dynamical system found in step 2.

We emphasise that the ‘characteristic system’ of ODEs which is obtained in step
2 is low-dimensional, in contrast to the underlying CME system, as well as that it
exhibits additional structure, allowing for the derivation of a closed-form analytical
approximation for the associated generating function.

To convert the results of the above procedure into solutions to the original stochastic
model, the three steps involved in our analysis have to be reverted. To that end, we
require the following three ingredients:

1. Initial conditions are originally stated in terms of the CME, and first have to
be reformulated in terms of the corresponding system of PDEs to ensure well-
posedness; then, initial conditions can be extracted for the dynamical system that
was obtained via the method of characteristics, reverting step 3.

2. To transform solutions to the characteristic system into solutions of the underly-
ing PDE system, the associated ‘characteristic transformation’ has to be inverted,
reverting step 2.

3. Lastly, solutions of the CME have to be extracted from solutions to the resulting
PDE system, reverting step 1. Although the correspondence between the two sets
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Fig. 5 Schematic overview of the analytical method

of solutions is exact, theoretically speaking, the complexity of the expressions
involved precludes the efficient analytical reconstruction of propagators from their
generating functions. Therefore, we propose a novel hybrid analytical-numerical
approach which relies on the Cauchy integral formula.

The various steps in our analytical method, as indicated above, are represented
in Fig. 5. It is important to mention that the implementation of Bayesian parameter
inference, as outlined in Sect. 1.1, is not a topic for the present article; rather, the aim
here is to describe our method, and to present analytical results which can readily
be implemented in the context of parameter inference. The article hence realises the
first stage of our research programme; the natural next stage, which is precisely that
implementation, will be the subject of a follow-up article by the same authors.

1.3 Outline

The present article is organised as follows. In Sect. 2, we apply the analytical method
outlined in Sect. 1.2 to model A, the gene expression model with autoregulation. Here,
we use a perturbative approach to incorporate the autoregulatory aspects of the model;
the resulting dynamical system can be solved in terms of confluent hypergeometric
functions, see §13 in NIST Digital Library of Mathematical Functions. In Sect. 3, the
samemethod is applied tomodelB, themodel that explicitly incorporates transcription.
We also indicate how autoregulation can be added to that model, and how the resulting
extendedmodel can be analysed on the basis of our treatment of model A. The analysis
carried out in Sects. 2 and 3 yields a ‘library’ of explicit asymptotic expressions for
the probability-generating functions associated to the underlying stochastic models.
To obtain quantifiable expressions for their propagators, we introduce a novel hybrid
analytical–numerical approach in Sect. 4, which can be readily implemented in the
Bayesian parameter inference framework that provided themotivation for our analysis;
see Sect. 1.1. We conclude with a discussion of our results, and an outlook to future
work, in Sect. 5.
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2 Model A: gene expression with autoregulation

Wefirst demonstrate our analytical method in the context of an autoregulatory stochas-
tic gene expression model, as presented by Iyer-Biswas and Jayaprakash (2014); see
also Fig. 3. In the original article (Iyer-Biswas and Jayaprakash 2014), a Poisson rep-
resentation was used to obtain analytical descriptions for time-independent solutions
to the model. For a visual guide to the upcoming analysis, the reader is referred to
Fig. 5.

2.1 Stochastic model and CME

The basic stochastic model for gene expression is represented by the reaction scheme

D
c f
�
cb

D∗ (DNA switching),

D∗ pb→ D∗ + P (production of protein),

P
pd→ ∅ (decay of protein).

(2.1)

The gene can hence switch between the inactive state D and the active state D∗, with
switching rates c f and cb, respectively. The active gene produces protein (P) with rate
pb, while protein decays with rate pd .

The autoregulatory part of the model is implemented as either positive or negative
feedback:

D + P
a→ D∗ + P (autoactivation), (2.2a)

D∗ + P
r→ D + P (autorepression). (2.2b)

In the case of autoactivation, viz. (2.2a), protein induces activation of the gene with
activation rate a, thereby accelerating its own production; in the case of autorepression,
viz. (2.2b), protein deactivates the active gene with repression rate r , impeding its own
production.

The CME system that is associated to the reaction scheme in (2.1), with autoacti-
vation as in (2.2a), is given by

dP(0)
n

dt
= −

(
κ f + a

pd
n

)
P(0)
n + κb P

(1)
n +

[
(n + 1)P(0)

n+1 − nP(0)
n

]
, (2.3a)

dP(1)
n

dt
=

(
κ f + a

pd
n

)
P(0)
n −κb P

(1)
n +

[
(n + 1)P(1)

n+1−nP(1)
n

]
+ λ

[
P(1)
n−1 − P(1)

n

]
.

(2.3b)

Here, P( j)
n (t) ( j = 0, 1) represents the probability of n protein being present at time t

while the gene is either inactive (0) or active (1). The time variable is nondimension-
alised by the protein decay rate pd ; other model parameters are scaled as
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κ f = c f

pd
, κb = cb

pd
, and λ = pb

pd
. (2.4)

Analogously, the CME system for the case of autorepression, as defined in (2.2b),
is given by

dP(0)
n

dt
= −κ f P

(0)
n +

(
κb + r

pd
n

)
P(1)
n +

[
(n + 1)P(0)

n+1 − nP(0)
n

]
, (2.5a)

dP(1)
n

dt
= κ f P

(0)
n −

(
κb+ r

pd
n

)
P(1)
n +

[
(n + 1)P(1)

n+1−nP(1)
n

]
+λ

(
P(1)
n−1 − P(1)

n

)
.

(2.5b)

Remark 2.1 A priori, it is possible to incorporate both autoactivation and autore-
pression in a single model, by merging systems (2.3) and (2.5). However, since
autoactivation and autorepression precisely counteract each other, a partial cancella-
tion would ensue, resulting in effective activation or repression. It can hence be argued
that the simultaneous inclusion of both effects would introduce superfluous terms and
parameters, which could be considered as poor modelling practice. Therefore, we
choose to model the two autoregulation mechanisms separately.

2.2 Generating function PDE

Rather than investigating the dynamics of (2.3) and (2.5) numerically, using stochastic
simulation, we aim to employ an analytical approach. To that end, we define the
probability-generating functions F ( j)(z, t) ( j = 0, 1) as follows; see e.g. Gardiner
(2009):

F ( j)(z, t) =
∞∑

n=0

zn P( j)
n (t). (2.6)

In the case of autoactivation, the generating functions F ( j)(z, t) can be seen to satisfy

∂t F
(0) + (z − 1)∂z F

(0) + a

pd
z∂z F

(0) = −κ f F
(0) + κbF

(1), (2.7a)

∂t F
(1) + (z − 1)∂z F

(1) − a

pd
z∂z F

(0) = κ f F
(0) − κbF

(1) + λ(z − 1)F (1) (2.7b)

if the coefficients P( j)
n (t) in (2.6) obey the CME system (2.3); likewise, in the case of

autorepression, (2.3) gives rise to

∂t F
(0) + (z − 1)∂z F

(0) − r

pd
z∂z F

(1) = −κ f F
(0) + κbF

(1), (2.8a)

∂t F
(1) + (z − 1)∂z F

(1) + r

pd
z∂z F

(1) = κ f F
(0) − κbF

(1) + λ(z − 1)F (1). (2.8b)
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Both (2.7) and (2.8) are systems of coupled, linear, first-order, hyperbolic partial
differential equations (PDEs). Systems of this type are typically difficult to analyse;
existing techniques only provide general results (Courant and Hilbert 1962; Taylor
2011).

To allow for an explicit analysis of systems (2.7) and (2.8), we make the following
assumption:

Assumption 2.2 We assume that the autoactivation rate a in (2.2) is small in com-
parison with the other model parameters; specifically, we write

a = αpd δ, (2.9)

where 0 < δ < 1 is sufficiently small. Likewise, we assume that the autorepression
rate r is small in comparison with the other model parameters, writing

r = ρpd δ. (2.10)

Previous work on the inclusion of autoregulatory effects in model selection by
Feigelman et al. (2016) suggests that, in the context of Nanog expression in mouse
embryonic stem cells, autoregulation rates are indeed small compared to other model
parameters.

Based on Assumption 2.2, we can expand the generating functions F ( j) ( j = 0, 1)
as power series in δ:

F ( j)(z, t) =
∞∑

m=0

δmF ( j)
m (z, t). (2.11)

Substitution of (2.11) into (2.7) yields

∂t F
(0)
m + (z − 1)∂z F

(0)
m = −κ f F

(0)
m + κbF

(1)
m − α z∂z F

(0)
m−1, (2.12a)

∂t F
(1)
m + (z − 1)∂z F

(1)
m = κ f F

(0)
m − κbF

(1)
m + λ(z − 1)F (1)

m + α z∂z F
(0)
m−1;

(2.12b)

analogously, we substitute (2.11) into (2.8) to find

∂t F
(0)
m + (z − 1)∂z F

(0)
m = −κ f F

(0)
m + κbF

(1)
m + ρ z∂z F

(1)
m−1, (2.13a)

∂t F
(1)
m + (z − 1)∂z F

(1)
m = κ f F

(0)
m − κbF

(1)
m + λ(z − 1)F (1)

m − ρ z∂z F
(1)
m−1.

(2.13b)

We observe that, in (2.12) and (2.13), the same leading-order differential operator
acts on both F (0)

m and F (1)
m , which allows us to apply the method of characteristics to

solve the equations for F ( j)
m ( j = 0, 1) simultaneously. In particular, we emphasise

that, mathematically speaking, the resulting perturbation is regular in the perturbation
parameter δ.
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2.3 Dynamical systems analysis

In this section, we apply the method of characteristics to derive the ‘characteristic
equations’ that are associated to the PDE systems (2.12) and (2.13), respectively;
the former are systems of ODEs, which are naturally analysed in the language of
dynamical systems.

2.3.1 Autoactivation

We first consider the case of autoactivation; to that end, we rewrite system (2.12) as

(
∂t + v∂v

)
F (0)
m + κ f F

(0)
m − κbF

(1)
m = −α(v + 1)∂vF

(0)
m−1, (2.14a)

(
∂t + v∂v

)
F (1)
m − κ f F

(0)
m + κbF

(1)
m − λvF (1)

m = α (v + 1)∂vF
(0)
m−1, (2.14b)

where we have introduced the new variable

v = z − 1. (2.15)

The differential operator ∂t + v∂v in Eq. (2.14) gives rise to characteristics ξ(s; v0)

that obey the characteristic equation

∂v

∂s
= v; (2.16)

these characteristics can thus be expressed as

ξ(s; v0) = (
s, v0e

s) . (2.17)

Since the partial differential operators in (2.14) transform into

∂t + v∂v = ∂s and (2.18a)

α(v + 1)∂v = α
(
v0 + e−s) ∂v0 , (2.18b)

we arrive at the following system:

∂s F
(0)
m + κ f F

(0)
m − κbF

(1)
m = −α

(
v0 + e−s) ∂v0F

(0)
m−1, (2.19a)

∂s F
(1)
m − κ f F

(0)
m + κbF

(1)
m − λv0e

s F (1)
m = α

(
v0 + e−s) ∂v0F

(0)
m−1. (2.19b)

Note that Eq. (2.19) is a recursive (nonhomogeneous) system of ordinary differential
equations for F ( j)

m ( j = 0, 1). Henceforth, we will therefore refer to (2.19) as such,
while retaining the use of partial derivatives ∂s due to the presence of ∂v0 in the
corresponding right-hand sides.

To solve system (2.19), we rewrite it as a second-order ODE for F (0)
m : we hence

obtain
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[
∂2s + (

κ f + κb − λv0e
s)∂s − κ f λv0e

s
]
F (0)
m = [

λv0e
s − ∂s

]
α
(
v0 + e−s)∂v0F

(0)
m−1,

(2.20)
which can be solved recursively to determine F (0)

m for any m ≥ 0. To simplify (2.20),
we introduce the variable

w = λv0e
s, (2.21)

which transforms the partial derivatives ∂s and ∂v0 into

∂s → w∂w and ∂v0 → w

v0
∂w + ∂v0; (2.22)

Equation (2.20) hence reads

[
(w∂w)2 + (κ f + κb − w)(w∂w) − κ f w

]
F (0)
m

= (
w − w∂w

)
α (w + λ)

(
∂w + v0

w
∂v0

)
F (0)
m−1. (2.23)

Using (2.19a), we can express the second component F (1)
m in terms of F (0)

m as

F (1)
m = 1

κb

[
∂s F

(0)
m + κ f F

(0)
m + α

(
v0 + e−s) ∂v0F

(0)
m−1

]

= 1

κb

[
w∂wF (0)

m + κ f F
(0)
m + α(w + λ)

(
∂w + v0

w
∂v0

)
F (0)
m−1

]
. (2.24)

At leading order, i.e. for m = 0, (2.23) reduces to

[
(w∂w)2 + (κ f + κb − w)(w∂w) − κ f w

]
F (0)
0 = 0, (2.25)

the solutions of which can be expressed in terms of the confluent hypergeometric
function 1F1, see §13 of NIST Digital Library of Mathematical Functions, to yield

F (0)
0 (w) = c11F1(κ f , 1+κ f +κb, w)+c2w

−κ f −κb
1F1(−κb, 1−κ f −κb, w). (2.26)

Using (2.24), we can determine

F (1)
0 (w) = 1

κb

(
w∂wF (0)

0 + κ f F
(0)
0

)
, (2.27)

with F (0)
0 as given in (2.26); for an explicit expression, see Eq. (A.1) in Appendix A.

The expression for F (0)
0 (w) in (2.26) allows us to determine the first-order correction

F (0)
1 (w): substituting m = 1 in (2.23), we obtain

[
(w∂w)2 + (κ f + κb − w)(w∂w) − κ f w

]
F (0)
1

= (
w − w∂w

)
α (w + λ)

(
∂w + v0

w
∂v0

)
F (0)
0 . (2.28)
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Next, we apply the method of variation of constants to express the solution to (2.28)
as

F (0)
1 (w) = 1

κ f + κb

[
1F1(κ f , 1 + κ f + κb, w)

∫ w

c3
1F1(−κb, 1−κ f −κb, ŵ) g(ŵ) dŵ

− w−κ f −κb
1F1(−κb, 1 − κ f − κb, w)

∫ w

c4
1F1(κ f , 1 + κ f

+ κb, ŵ)
g(ŵ)

ŵ−κ f −κb
dŵ

]
, (2.29)

where

g(w) = e−w

w
(w − w∂w) α (w + λ)

(
∂w + v0

w
∂v0

)
F (0)
0 , (2.30)

with F (0)
0 as given in (2.26). Finally, we may again use (2.24) to determine

F (1)
1 (w) = 1

κb

[
w∂wF (0)

1 + κ f F
(0)
1 + α(w + λ)

(
∂w + v0

w
∂v0

)
F (0)
0

]
, (2.31)

with F (0)
0 and F (0)

1 as given in (2.26) and (2.29), respectively.
At this point in the analysis, the constants c1 and c2 in (2.26) and the integration

limits c3 and c4 in (2.29) remain undetermined. To fix these constants, and thereby
determine a unique solution to (2.19), we have to prescribe appropriate initial condi-
tions.

2.3.2 Autorepression

Given the analysis of autoactivation in the previous subsection, the case of autorepres-
sion can be analysed in an analogous manner. Employing the same characteristics as
before, recall (2.17), we obtain

∂s F
(0)
m + κ f F

(0)
m − κbF

(1)
m = ρ

(
v0 + e−s) ∂v0F

(1)
m−1, (2.32a)

∂s F
(1)
m − κ f F

(0)
m + κbF

(1)
m − λv0e

s F (1)
m = −ρ

(
v0 + e−s) ∂v0F

(1)
m−1 (2.32b)

from system (2.13); cf. Eq. (2.19). Next, we rewrite (2.32) as a second-order ODE for
F (1)
m , using again the variable transformation in (2.21):

[
(w∂w)2 + (

κ f + κb − w
)
(w∂w) − (1 + κ f )w

]
F (1)
m

= − (w∂w) ρ (w + λ)
(
∂w + v0

w
∂v0

)
F (1)
m−1, (2.33)

which can be solved recursively to obtain F (1)
m for any m ≥ 1. The first component

F (0)
m can be expressed in terms of F (1)

m as
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F (0)
m = 1

κ f

[
w∂wF (1)

m + (κb − w)F (1)
m + ρ (w + λ)

(
∂w + v0

w
∂v0

)
F (1)
m−1

]
; (2.34)

to leading order, we thus obtain

F (1)
0 (w) = ĉ1 1F1(1+ κ f , 1+ κ f + κb, w)+ ĉ2w

−κ f −κb
1F1(1− κb, 1− κ f − κb, w)

(2.35)
and

F (0)
0 = 1

κ f

[
w∂wF (1)

0 + (κb − w)F (1)
0

]
. (2.36)

The corresponding equation for the first-order correction F (1)
1 reads

[
(w∂w)2 + (κ f + κb − w)(w∂w) − (1 + κ f )w

]
F (1)
1

= −(w∂w)ρ(w + λ)
(
∂w + v0

w
∂v0

)
F (1)
0 , (2.37)

which can be solved via the method of variation of constants to give

F (1)
1 (w) = 1

κ f + κb

[
1F1(1 + κ f , 1 + κ f + κb, w)

∫ w

ĉ3
1F1(1 − κb, 1 − κ f − κb, ŵ) h(ŵ) dŵ

− w−κ f −κb
1F1(1 − κb, 1 − κ f − κb, w)

∫ w

ĉ4
1F1(1 + κ f , 1 + κ f + κb, ŵ)

h(ŵ)

ŵ−κ f −κb
dŵ

]
; (2.38)

here,

h(w) = −e−w

w
(w∂w) ρ (w + λ)

(
∂w + v0

w
∂v0

)
F (1)
0 , (2.39)

with F (1)
0 as in (2.35). The first-order correction to the first component F (0)

0 is hence
given by

F (0)
1 (w) = 1

κ f

[
w∂wF (1)

1 + (κb − w)F (1)
1 + ρ (w + λ)

(
∂w + v0

w
∂v0

)
F (1)
0

]
,

(2.40)
with F (1)

0 and F (1)
1 as in (2.35) and (2.38), respectively. As in the case of autoactivation,

the constants ĉ1 and ĉ2 in (2.35) and the integration limits ĉ3 and ĉ4 in (2.38) remain
undetermined, and have to be fixed through suitable initial conditions.

2.4 Initial conditions

To determine appropriate initial conditions for the dynamical systems (2.19) and
(2.32), we consider the original CME systems (2.3) and (2.5), respectively.
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At time t = 0, we impose an initial protein number n = n0, which implies

P(0)
n (0) + P(1)

n (0) = δn,n0 (2.41)

for the probabilities P( j)
n (t) ( j = 0, 1); here, δn,n0 denotes the standard Kronecker

symbol, with δn,n0 = 1 for n = n0 and δn,n0 = 0 otherwise. Using the definition of
the generating functions F ( j)(z, t) in (2.6), we find that

F (0)(z, 0) + F (1)(z, 0) = zn0 = (v + 1)n0 , (2.42)

taking into account the change of variables in (2.15). Thus, (2.42) provides an initial
condition for the PDE systems (2.7) and (2.8). Given the power series expansion in
(2.11), we infer that the coefficients F ( j)

m (v, t) ( j = 0, 1) satisfy

F (0)
0 (v, 0) + F (1)

0 (v, 0) = (v + 1)n0 and (2.43a)

F (0)
m (v, 0) + F (1)

m (v, 0) = 0 for all m ≥ 1, (2.43b)

which holds for both (2.12) and (2.13).
To be able to interpret the initial conditions in (2.43) in the context of the dynamical

systems (2.19) and (2.32), we revisit the method of characteristics, which was used to
map the PDE systems (2.12) and (2.13) to the former, respectively.

The characteristics of the differential operator ∂t + v∂v(= ∂s) in (2.19) and (2.32)
are the integral curves of the vector field (1, v). Geometrically speaking, these char-
acteristic curves foliate the (t, v)-plane over the v-axis. Therefore, each characteristic
can be identified by its base point, which is the point where the characteristic curve
intersects the v-axis, at v = v0; see Eq. (2.17) and Fig. 6.

Fig. 6 The (t, v)-coordinate plane, on which the PDE systems (2.12) and (2.13) are solved. The character-
istics are integral curves of the vector field (1, v), indicated in blue. The black characteristic curve intersects
the v-axis at v = v0 (colour figure online)
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Equivalently, each characteristic can be represented as a graph over the t-axis.
Indeed, the differential equation for the v-component of a characteristic curve (2.16)
can be solved to obtain the natural parametric description of a characteristic ‘fibre’
with base point v = v0, which is given by (s, v0es). Here, the parameter s along the
characteristic is chosen such that its point of intersection with the v-axis lies at s = 0.
Given that choice, it is natural to identify the parameter along the characteristic (s)
with the time variable (t). Hence, the initial conditions in (2.43), which determine a
relation between F (0)

m and F (1)
m on the v-axis, can be interpreted on every characteristic

as
[
F (0)
0 + F (1)

0

]

s=0
= (v0 + 1)n0 and (2.44a)

[
F (0)
m + F (1)

m

]

s=0
= 0 for all m ≥ 1, (2.44b)

which again holds for both (2.19) and (2.32).

Remark 2.3 For CME systems such as (2.3) and (2.5), it is customary to impose a
‘normalisation’ condition of the form

∞∑

m=0

P(0)
m (t) + P(1)

m (t) = 1, (2.45)

as P(0)
m (t) and P(1)

m (t) represent probabilities. Recast in the framework of generating
functions, recall (2.6), the above normalisation condition yields the boundary condition

[
F (0)(z, t) + F (1)(z, t)

]

z=1
=

[
F (0)(v, t) + F (1)(v, t)

]

v=0
= 1. (2.46)

It is worthwhile to note that (2.46) is automatically satisfied whenever (2.43) is
imposed: by adding the two equations in system (2.12)—or, equivalently, in (2.13)—
one sees that F (0)

m + F (1)
m satisfies

∂s F
(0)
m + ∂s F

(1)
m = λvF (1)

m . (2.47)

The line {v = 0} is represented by the ‘trivial’ characteristic, which is identified by
v0 = 0; therefore, on that characteristic, we impose (2.43) to find

∂s F
(0)
m + ∂s F

(1)
m = 0, (2.48a)

[
F (0)
0 + F (1)

0

]

s=0
= 1, and (2.48b)

[
F (0)
m + F (1)

m

]

s=0
= 0 for all m ≥ 1, (2.48c)

which implies that F (0)
0 + F (1)

0 = 1 for all s, as well as that F (0)
m + F (1)

m vanishes
identically for allm ≥ 1. Substituting these results into the power series representation
for F ( j)(z, t) ( j = 0, 1) in (2.11), we obtain (2.46).
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At this point, it is important to observe that Eq. (2.43) determines a line of initial
conditions in the phase spaces of the dynamical systems (2.19) and (2.32). Therefore,
at every order in δ, we can only fix one of the two free parameters that arise in the
solution of the corresponding differential equations. In particular, (2.43) only fixes
either c1 or c2 in (2.26), and either c3 or c4 in (2.29), and so forth. That indeterminacy
motivates us to introduce a new parameter χ , which is defined as follows:

Definition 2.4 Consider the CME systems (2.3) and (2.5). We define χ(n0) to be the
probability that the gene modelled by the reaction scheme in (2.1) is switched off at
time t = 0, given an initial protein number n0.

Definition 2.4 immediately specifies initial conditions for systems (2.3) and (2.5)
via

P(0)
n (0) = χ(n0) δn,n0 and P(1)

n (0) = (1 − χ(n0)) δn,n0; (2.49)

the above expression, in turn, provides us with a complete set of initial conditions for
the PDE systems (2.7) and (2.8), to wit

F (0)(v, 0) = χ(n0) (v + 1)n0 and (2.50a)

F (1)(v, 0) = (1 − χ(n0)) (v + 1)n0 . (2.50b)

Here, we allow for the fact that χ(n0) may depend on other model parameters, and in
particular on the autoregulation rates a and r ; for a discussion of alternative options,
see Sect. 4.1. We therefore expand χ(n0) as a power series in δ,

χ(n0) =
∞∑

m=0

δmχm(n0). (2.51)

The above expansion can be used to infer a complete set of initial conditions for the
PDE systems (2.12) and (2.13), yielding

F (0)
m (v, 0) = χm (v + 1)n0 for all m ≥ 0, (2.52a)

F (1)
0 (v, 0) = (1 − χ0) (v + 1)n0 , and (2.52b)

F (1)
m (v, 0) = −χm (v + 1)n0 for all m ≥ 1. (2.52c)

By the same reasoning that inferred (2.44) from (2.43), we can conclude that the
complete set of initial conditions for the dynamical systems (2.19) and (2.32) is given
by

[
F (0)
m

]

s=0
= χm (v0 + 1)n0 for all m ≥ 0, (2.53a)

[
F (1)
0

]

s=0
= (1 − χ0) (v0 + 1)n0 , and (2.53b)

[
F (1)
m

]

s=0
= −χm (v0 + 1)n0 for all m ≥ 1. (2.53c)
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We can now use the conditions in (2.53) to determine the free constants c1 and c2
in (2.26), which yields

c1 = (1 + v0)
n0e−λv0

κb

κ f + κb

(
1F1(−κb, 1 − κ f − κb, λv0)

+ χ0λv0

1 − κ f − κb
1F1(1 − κb, 2 − κ f − κb, λv0)

)
and (2.54a)

c2 = (1 + v0)
n0e−λv0

(λv0)
κ f +κb

κ f + κb

{
[χ0(κ f + κb) − κb]1F1(κ f , 1 + κ f + κb, λv0)

+ κ f χ0λv0

1 + κ f + κb
1F1(1 + κ f , 2 + κ f + κb, λv0)

}
. (2.54b)

Analogously, for ĉ1 and ĉ2 in (2.35), we obtain

ĉ1 = c1
κ f

κb
and ĉ2 = c2, (2.55)

with c1 and c2 as in (2.54).Using conversion formulas found in §13.3(i) ofNISTDigital
Library of Mathematical Functions, one can show that the expressions resulting from
(2.35) and (2.36) match those in (2.27) and (2.26), respectively, as expected; see also
Eq. (A.1). Explicit expressions for the integration limits c3 and c4 in (2.29), as well as
for the corresponding limits ĉ3 and ĉ4 in (2.38), can be found in Appendix A.

2.5 Inverse transformation

The final step towards providing explicit solutions to the PDE systems (2.7) and (2.8)
consists in interpreting the solutions to the dynamical systems (2.19) and (2.32), with
initial conditions as in (2.53), as solutions to the PDE systems (2.12) and (2.13),
respectively. To that end, we again consider the corresponding characteristics from a
geometric viewpoint.

As mentioned in Sect. 2.4, the (t, v)-coordinate plane is foliated by characteristics,
which are the integral curves of the vector field (1, v); recall Fig. 6. Hence, any point
(t, v) lies on a unique characteristic; flowing backward along that characteristic to its
intersection with the v-axis, we can determine the corresponding base point v0 by the
inverse transformation

(t, v) �→ v0(t, v) = ve−t , (2.56)

sincewehave identified the parameter along the characteristic (s)with the timevariable
(t).

To determine the value of F ( j)
m (v, t) ( j = 0, 1), interpreted as a solution to the

PDE system (2.12) or (2.13), we proceed as follows. We first apply the inverse trans-
formation in (2.56) to establish on which characteristic the coordinate pair (t, v) lies.
For that characteristic, identified by its base point v0, we then find the solution to the
dynamical system (2.19) or (2.32), which is a function of s and v0. Next, we substitute
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s = t and v0 = ve−t into that solution to obtain an explicit expression for the solution
to the PDE system (2.12) or (2.13):

F ( j)
m (v, t) [as solution to (2.12) or (2.13)] =

[
F ( j)
m

]

(s,v0)=(t,ve−t )
, (2.57)

where F ( j)
m ( j = 0, 1) on the right-hand side denotes the solution to (2.19) or (2.32),

with initial conditions as in (2.53). Lastly, we substitute F ( j)
m (v, t) into the power

series in (2.11) to obtain an explicit solution to (2.7) or (2.8), to satisfactory order in
δ.

Remark 2.5 The geometric interpretation of characteristics that was used to motivate
the inverse transformation in (2.56) also shows that the introduction of the new system
parameter χ in Definition 2.4 is necessary for the generating functions F ( j) to be
determined uniquely as solutions to (2.7) or (2.8), even if we are only interested in
their sum F (0)(v, t) + F (1)(v, t). The crucial point is that any free constants obtained
in the process of solving the dynamical systems (2.19) and (2.32)—or, equivalently,
their second-order one-dimensional counterparts (2.20) and (2.33), respectively—are
constant in s. In other words, they are constant along the particular characteristic on
which the dynamical system is solved. These constants—such as e.g. c1 and c2 in
(2.26)—can, and generally will, depend on the base point v0 of the characteristic; see
for example (2.54). The inverse transformation in (2.56) that is used to reconstruct the
solution to the original PDE from that of the corresponding dynamical system would
then yield undetermined functions c(v e−t ) in the resulting solutions to (2.7) and (2.8),
respectively.

2.6 Summary of main result

To summarise Sect. 2, we combine the analysis of the previous subsections to state
our main result.

Main result: The PDE system (2.7) can be solved for sufficiently small autoactivation
rates a; see Assumption 2.2. Its solutions F ( j)(z, t) ( j = 0, 1) are expressed as power
series in the small parameter δ; recall (2.11). The coefficients F ( j)

m (z, t) in these series,
written in terms of the shifted variable v defined in (2.15), can be found by

(1) solving recursively the second-order ODE (2.20) and using the identity in (2.24),
incorporating the initial conditions in (2.53);

(2) and, subsequently, applying the inverse transformation in (2.56) to the resulting
solutions.

Likewise, we can solve the PDE system (2.8) for sufficiently small autorepression
rates r ; see Assumption 2.2. Its solutions F ( j)(z, t) are again expressed as power series
in the small parameter δ; cf. (2.11). The coefficients F ( j)

m (z, t) in these series, written
in terms of the shifted variable v defined in (2.15), can be found by

(1) solving recursively the second-order ODE (2.33) and using the identity in (2.34),
incorporating the initial conditions in (2.53);
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(2) and, subsequently, applying the inverse transformation in (2.56) to the resulting
solutions.

To illustrate the procedure described above, we state the resulting explicit expres-
sions for the leading-order solution to (2.7)—or, equivalently, to (2.8)—in terms of
the original variables z and t :

F (0)
0 (z, t) = [

1 + (z − 1)e−t ]n0e−λ(z−1)e−t κb

κ f + κb[
1F1

( − κb, 1 − κ f − κb, λ(z − 1)e−t)

+ χ0λ(z − 1)e−t

1 − κ f − κb
1F1

(
1 − κb, 2 − κ f − κb, λ(z − 1)e−t)

]

× 1F1(κ f , 1 + κ f + κb, λ(z − 1))

− [
1 + (z − 1)e−t ]n0e−λ(z−1)e−t e−(κ f +κb)t

κ f + κb

×
{
[χ0(κ f + κb) − κb]1F1

(
κ f , 1 + κ f + κb, λ(z − 1)e−t)

+ κ f χ0λ(z − 1)e−t

1 + κ f + κb
1F1

(
1 + κ f , 2 + κ f + κb, λ(z − 1)e−t)

}

× 1F1(−κb, 1 − κ f − κb, λ(z − 1)) and (2.58a)

F (1)
0 (z, t) = [

1 + (z − 1)e−t ]n0e−λ(z−1)e−t κ f

κ f + κb

×
[
1F1

( − κb, 1 − κ f − κb, λ(z − 1)e−t)

+ χ0λ(z − 1)e−t

1 − κ f − κb
1F1

(
1 − κb, 2 − κ f − κb, λ(z − 1)e−t)

]

× 1F1(1 + κ f , 1 + κ f + κb, λ(z − 1))

+ [
1 + (z − 1)e−t ]n0e−λ(z−1)e−t e−(κ f +κb)t

κ f + κb

×
{
[χ0(κ f + κb) − κb]1F1

(
κ f , 1 + κ f + κb, λ(z − 1)e−t)

+ κ f χ0λ(z − 1)e−t

1 + κ f + κb
1F1

(
1 + κ f , 2 + κ f + κb, λ(z − 1)e−t)

}

× 1F1(1 − κb, 1 − κ f − κb, λ(z − 1)). (2.58b)

Note that similar expressions were derived by Iyer-Biswas et al. (2009), where an
analogous generating function approach was applied under the assumption that the
gene is initially inactive—i.e. that χ(n0) = 1, see Definition 2.4—as well as that the
initial protein number n0 is zero. With these choices, the expression for F (0)

0 + F (1)
0
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from (2.58) can be seen to coincide with that found in Equations (5) through (7)
of Iyer-Biswas et al. (2009), using §13.3.4 and §13.2.39 of NIST Digital Library of
Mathematical Functions.

3 Model B: gene expression with explicit transcription

In this section, we apply our analytical method to model B, a stochastic gene expres-
sion model presented by Shahrezaei and Swain (2008a) which explicitly incorporates
the transcription stage in the expression process, as well as DNA switching; see also
Fig. 4. In the original article by Shahrezaei and Swain (2008a), a generating function
approach was used to obtain analytical expressions for the time-independent (‘station-
ary’) solution to the model. For a visual guide to the upcoming analysis, the reader is
again referred to Fig. 5.

3.1 Stochastic model and CME

The model for stochastic gene expression considered here is given by the reaction
scheme

D
k0�
k1

D∗ (DNA switching),

D∗ ν0→ D∗ + M (transcription of DNA to mRNA),

M
ν1→ M + P (translation of mRNA to protein),

M
d0→ ∅ (decay of mRNA),

P
d1→ ∅ (decay of protein).

(3.1)

The modelled gene can hence switch between inactive and active states which are
denoted by D and D∗, respectively, with corresponding switching rates k0 and k1. The
active gene is transcribed to mRNA (M) with rate ν0; mRNA is translated to protein
(P) with rate ν1. Finally, mRNA decays with rate d0, while protein decays with rate
d1.

As in model A, autoregulatory terms can be added to the core reaction scheme
in (3.1). Since both mRNA and protein are modelled explicitly, we can identify four
distinct autoregulatory mechanisms, in analogy to those in (2.2a) and (2.2b):

D + M
aM→ D∗ + M (autoactivation through mRNA), (3.2a)

D∗ + M
rM→ D + M (autorepression through mRNA), (3.2b)

D + P
aP→ D∗ + P (autoactivation through protein), (3.2c)

D∗ + P
rP→ D + P (autorepression through protein). (3.2d)

Autoactivation can be achieved either by mRNA or by protein, with rates aM or aP ,
respectively; similarly, autorepression can occur either through mRNA or through
protein, with respective rates rM or rP .
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The CME system associated to the reaction scheme in (3.1) is given by

dP(0)
m,n

dt
= −κ0P

(0)
m,n + κ1P

(1)
m,n + γ

[
(m + 1)P(0)

m+1,n − mP(0)
m,n

]

+
[
(n + 1)P(0)

m,n+1 − nP(0)
m,n

]

+ γμ
(
mP(0)

m,n−1 − mP(0)
m,n

)
, (3.3a)

dP(1)
m,n

dt
= κ0P

(0)
m,n − κ1P

(1)
m,n + γ

[
(m + 1)P(1)

m+1,n − mP(1)
m,n

]

+
[
(n + 1)P(1)

m,n+1 − nP(1)
m,n

]

+ γμ
(
mP(1)

m,n−1 − mP(1)
m,n

)
+ λ

(
P(1)
m−1,n − P(1)

m,n

)
. (3.3b)

Here, P( j)
m,n(t) ( j = 0, 1) represents the probability of m mRNA and n protein being

present at time t while the gene is either inactive (0) or active (1). As in (2.3) and
(2.5), the time variable is nondimensionalised by the protein decay rate d1; othermodel
parameters are scaled as

κ0 = k0
d1

, κ1 = k1
d1

, γ = d0
d1

, λ = ν0

d1
, and μ = ν1

d0
. (3.4)

We note that the above scaling was also used by Shahrezaei and Swain (2008a). The
effects of incorporating the autoregulatory mechanisms in (3.2) into the CME system
(3.3) are specified in Table 1.

3.2 Generating function PDE

Since the probabilities P( j)
m,n(t) ( j = 0, 1) in (3.3) depend on both the mRNA number

m and the protein number n, we introduce probability-generating functions that are
defined by double asymptotic series:

Table 1 Contribution to the right-hand sides of (3.3) that is due to incorporation of the autoregulatory
mechanisms in (3.2)

Autoregulation type Contribution to (3.3a) Contribution to (3.3b)

mRNA autoactivation − aM
d1

mP(0)
m,n + aM

d1
mP(0)

m,n

mRNA autorepression + rM
d1

mP(1)
m,n − rM

d1
mP(1)

m,n

Protein autoactivation − aP
d1

nP(0)
m,n + aP

d1
nP(0)

m,n

Protein autorepression + rP
d1

nP(1)
m,n − rP

d1
nP(1)

m,n

123



F. Veerman et al.

Table 2 Contribution to the right-hand sides of (3.6) that is due to incorporation of the autoregulatory
mechanisms in (3.2)

Autoregulation type Contribution to (3.6a) Contribution to (3.6b)

mRNA autoactivation − aM
d1

w∂wF(0) + aM
d1

w∂wF(0)

mRNA autorepression + rM
d1

w∂wF(1) − rM
d1

w∂wF(1)

Protein autoactivation − aP
d1

z∂z F(0) + aP
d1

z∂z F(0)

Protein autorepression + rP
d1

z∂z F(1) − rP
d1

z∂z F(1)

F ( j)(w, z, t) =
∞∑

m=0

∞∑

n=0

wmzn P( j)
m,n(t) for j = 0, 1. (3.5)

For coefficients P( j)
m,n(t) that obey the CME system (3.3), the associated generating

functions F ( j)(w, z, t) satisfy

∂t F
(0) + (z − 1)∂z F

(0) + γ (w − 1)∂wF (0) − γμ(z − 1)w∂wF (0)

= −κ0F
(0) + κ1F

(1), (3.6a)

∂t F
(1) + (z − 1)∂z F

(1) + γ (w − 1)∂wF (1) − γμ(z − 1)w∂wF (1)

= κ0F
(0) − κ1F

(1) + λ(w − 1)F (1). (3.6b)

The effects of incorporating the autoregulatory mechanisms in (3.2) into system (3.6)
are specified in Table 2.

3.3 Dynamical systems analysis

As before, the PDE system (3.6) for the generating function can be reformulated as a
system of ODEs via the method of characteristics. The differential operator ∂t + (z −
1)∂z + γ (w − 1)∂w − γμ(z − 1)w∂w now gives rise to the characteristic system

u̇ = γ [u − μv(u + 1)], (3.7a)

v̇ = v, (3.7b)

where u̇ = du
ds is the derivative along the characteristic, which is parametrised by s.

For simplicity, we have introduced the new variables u and v, which are defined as

u = w − 1 and v = z − 1, (3.8)

respectively. On the resulting characteristics, Eq. (3.6) yields the system of ODEs

Ḟ (0) = −κ0F
(0) + κ1F

(1), (3.9a)

Ḟ (1) = κ0F
(0) − κ1F

(1) + λuF (1). (3.9b)
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First, we note that the characteristic system (3.7) can be solved explicitly in terms
of the incomplete Gamma function �(a, z), see §8.2(i) of NIST Digital Library of
Mathematical Functions), yielding

u(s) = eγ (s−μv0es )
{
u0e

γμv0 + (−γμv0)
γ

[
�(1 − γ,−γμv0) − �(1 − γ,−γμv0e

s)
]}

, (3.10a)

v(s) = v0e
s . (3.10b)

However, due to its complex nature, the expression for u(s) given in (3.10a) cannot
be used to obtain explicit expressions for the generating functions F ( j) that solve
system (3.9). Therefore, inspired by the analysis by Shahrezaei and Swain (2008a)
and Popović et al. (2016), we make the following assumption:

Assumption 3.1 We assume that the decay rate of protein (d1) is smaller than the
decay rate of mRNA (d0); specifically, we write

d0
d1

= γ = 1

ε
, (3.11)

where 0 < ε < 1 is sufficiently small.

The resulting scale separation between mRNA and protein decay rates is well-
documented in manymicrobial organisms, including in bacteria and yeast (Shahrezaei
and Swain 2008a; Yu et al. 2006).

For clarity of presentation, we make an additional assumption here.

Assumption 3.2 We assume that all other model parameters κ0, κ1, λ, and μ, as
defined in (3.4), are O(1) in ε.

Remark 3.3 Although Assumption 3.2 is not strictly necessary for the upcoming anal-
ysis, it is beneficial. It is worthwhile to note that the analytical scheme presented in
this section can be applied in a straightforward fashion in cases where Assumption 3.2
fails, which is particularly relevant in relation to previous work (Shahrezaei and Swain
2008a; Feigelman et al. 2015), where the CME system (3.3) is studied for parameter
values far beyond the range implied by Assumption 3.2.

Using Assumption 3.1, we can write the characteristic system (3.7) as

εu̇ = u − μv(u + 1), (3.12a)

v̇ = v. (3.12b)

Since ε is assumed to be small, we can classify (3.12) as a singularly perturbed slow-
fast system in standard form; see Kuehn (2015). A comprehensive slow-fast analysis
of Eq. (3.12) was carried out by Popović et al. (2016); we highlight some relevant
aspects of that analysis here.

System (3.12) gives rise to a critical manifold C0 =
{
(u, v)

∣∣ u = μv
1−μv

}
. If ε is

asymptotically small, orbits of (3.12) can be separated into slow and fast segments,
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Fig. 7 Phase space dynamics of systems (3.12) and (3.13). The slow flow along C0 is indicated by single
arrows; the fast dynamics transverse to C0 are denoted by double arrows

using Fenichel’s geometric singular perturbation theory (Kuehn 2015). The critical
manifold C0 is normally repelling; in other words, orbits converge to C0 in backward
time at an exponential rate. For initial conditions asymptotically close to C0, orbits
initially follow C0 closely for some time, after which they move away from C0 under
the fast dynamics; see also Fig. 7.

To analyse the fast dynamics of system (3.12), we introduce the fast variable σ = s
ε
;

in terms of σ , (3.12) is hence expressed as

u′ = u − μv(u + 1), (3.13a)

v′ = εv, (3.13b)

where u′ = du
dσ . We can solve (3.13b) explicitly and write the result as a power series

in ε, which yields
v(σ ) = v0e

εσ = v0

∞∑

n=0

εn
σ n

n! . (3.14)

Expressing the solution to (3.13a) as a power series in ε, as well, i.e. writing

u(σ ) =
∞∑

n=0

εnûn(σ ), (3.15)

substituting (3.15) into (3.13a), and making use of (3.14), we find

dûn
dσ

= ûn − μv0
σ n

n!

[
1 +

n∑

l=0

σ−ln!
(n − l)! ûl

]
, (3.16)

with initial conditions

û0(0) = u0 and ûn(0) = 0 for n ≥ 1. (3.17)
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The first two terms in (3.15) are thus given by

û0(σ ) = μv0

1 − μv0
+

(
u0 − μv0

1 − μv0

)
e(1−μv0)σ and (3.18a)

û1(σ ) = μv0

(1 − μv0)2

[
1 − e(1−μv0)σ

1 − μv0
+ σ

]
−

(
u0 − μv0

1 − μv0

)
μv0

σ 2

2
e(1−μv0)σ .

(3.18b)

We now employ the expansion in (3.15) to obtain explicit expressions for the gen-
erating functions F ( j) ( j = 0, 1). In the fast variable σ = s

ε
, system (3.9) takes the

form

F (0)′ = −εκ0F
(0) + εκ1F

(1), (3.19a)

F (1)′ = εκ0F
(0) − εκ1F

(1) + ελuF (1). (3.19b)

As in the analysis of model A, recall Sect. 2.3, we rewrite system (3.19) as a second-
order ODE for F (0) to find

d2

dσ 2 F
(0) + ε(κ0 + κ1 − λu)

d

dσ
F (0) − ε2λκ0uF

(0) = 0. (3.20)

Next, we use (3.19a) to express F (1) in terms of F (0) as

F (1) = 1

εκ1

(
F (0)′ + εκ0F

(0)
)

. (3.21)

To incorporate the expansion for u in (3.15), we also expand F ( j) ( j = 0, 1) in powers
of ε, writing

F ( j)(σ ) =
∞∑

n=0

εn F ( j)
n (σ ). (3.22)

Substitution of (3.22) into (3.20) then yields

d2

dσ 2 F
(0)
0 = 0, (3.23a)

d2

dσ 2 F
(0)
1 + (κ0 + κ1 − λû0)

d

dσ
F (0)
0 = 0, (3.23b)

and

d2

dσ 2 F
(0)
n + (κ0 + κ1 − λû0)

d

dσ
F (0)
n+1 − λ

n∑

k=0

(
ûn+1−k

d

dσ
+ κ0 ûn−k

)
F (0)
k = 0

(3.24)
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for n ≥ 2. By combining (3.21) with (3.22), we obtain

d

dσ
F (0)
0 = 0 (3.25)

and

F (1)
n = κ0

κ1
F (0)
n + 1

κ1

d

dσ
F (0)
n+1 (3.26)

for n ≥ 0. We can solve Eqs. (3.23) and (3.24) iteratively—taking into account the
additional condition on F (0)

0 in (3.25)—to find

F (0)
0 = f0, (3.27a)

F (0)
1 = f1 + g1σ, and (3.27b)

F (0)
2 = f2 + g2σ + λ( f0κ0 + g1)

1 − μv0

[
e(1−μv0)σ

1 − μv0

(
u0 − μv0

1 − μv0

)
+ μv0

σ 2

2

]

− g1(κ0 + κ1)
σ 2

2
(3.27c)

for the first three terms which, upon substitution into (3.26), yields

F (1)
0 = f0κ0 + g1

κ1
and (3.28a)

F (1)
1 = f1κ0 + g2

κ1
+ λ( f0κ0 + g1)

κ1(1 − μv0)

[
e(1−μv0)σ

(
u0 − μv0

1 − μv0

)
+ σμv0

]
− σg1;
(3.28b)

here, fi and gi are free constants, to be determined by initial conditions; see Sect. 3.4.
Contrary to common practice in the study of slow-fast systems such as (3.19), we

forego a detailed analysis of the slow system (3.9), continuing our discussion with the
determination of appropriate initial conditions; cf. Sect. 2.4. For details on why the
slow dynamics is disregarded, the reader is referred to Remark 3.5.

3.4 Initial conditions and inverse transformation

To complete our analytical method, we discuss the determination of initial conditions
and the reconstruction of the solution to the original PDE system (3.6), as was done
for model A in Sects. 2.4 and 2.5, respectively.

3.4.1 Initial conditions

We follow the reasoning of Sect. 2.4, and determine appropriate initial conditions by
considering the original CME system (3.3).
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At time t = 0, we prescribe initial mRNA and protein numbers m0 and n0, respec-
tively. As in Sect. 2.4, we again introduce the parameter χ , which is defined as follows;
compare Definition 2.4:

Definition 3.4 Consider the CME system (3.3). We define χ(m0, n0) to be the prob-
ability that the gene modelled by the reaction scheme in (3.1) is switched off at time
t = 0, given initial mRNA and protein numbers m0 and n0, respectively.

For the probabilities P( j)
m,n(t) ( j = 0, 1), Definition 3.4 implies that

P(0)
m,n(0) = χ δm,m0 δn,n0 and (3.29a)

P(1)
m,n(0) = (1 − χ)δm,m0 δn,n0 . (3.29b)

Using the definition of the generating functions F ( j)(w, z, t) in (3.5), we find

F (0)(w, z, 0) = χ wm0 zn0 = χ(1 + u)m0(1 + v)n0 and (3.30a)

F (1)(w, z, 0) = (1 − χ)wm0 zn0 = (1 − χ)(1 + u)m0(1 + v)n0 , (3.30b)

taking into account the change of variables in (3.8).
Next, we can infer e.g. from (3.10) and well-known properties of the incomplete

Gamma function—see §8.2 of NIST Digital Library of Mathematical Functions—
that solutions to (3.7) exist globally, i.e. for all s. In particular, given an arbitrary
triple (s∗, u∗, v∗), we can apply the inverse flow of (3.7) to flow backward (u∗, v∗)
for time s∗. We conclude that the characteristics of the operator ∂t + (z − 1)∂z +
γ (w − 1)∂w − γμ(z − 1)w∂w = ∂t + v∂v + γ u∂u − γμ(u + 1)v∂u , which are
given by the orbits of system (3.7), foliate the (t, u, v)-coordinate space over the
{t = 0}-plane when the parameter along the characteristic (s) is identified with the
time variable (t).We can therefore uniquely identify such a characteristic—interpreted
as a fibre over the {t = 0}-plane—by its base point. Because orbits of (3.7) provide
a parametrisation of the underlying characteristics, the coordinates of that base point
are given by (0, u0, v0), where (u0, v0) are the initial values of the corresponding orbit
of (3.7). Hence, the conditions in (3.30) yield, on each characteristic,

[
F (0)

]

s=0
= χ(1 + u0)

m0(1 + v0)
n0 and (3.31a)

[
F (1)

]

s=0
= (1 − χ)(1 + u0)

m0(1 + v0)
n0 . (3.31b)

As s = 0 implies σ = 0, we can apply the initial conditions in (3.31) to the solutions
of the ODE system (3.19) in order to determine the free constants fi and gi in (3.27)
and (3.28). Combining the power series expansion in (3.22) with (3.31), we obtain

[
F (0)
0

]

σ=0
= χ(1 + u0)

m0(1 + v0)
n0 , (3.32a)

[
F (1)
0

]

σ=0
= (1 − χ)(1 + u0)

m0(1 + v0)
n0 , and (3.32b)
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[
F ( j)
n

]

σ=0
= 0 for all n ≥ 1, with j = 0, 1, (3.32c)

which implies

f0 = χ(1 + u0)
m0(1 + v0)

n0 , (3.33a)

f1 = 0, (3.33b)

f2 = −(1 − χ)(1 + u0)
m0(1 + v0)

n0 λκ1

(1 − μv0)2

(
u0 − μv0

1 − μv0

)
, (3.33c)

g1 = (κ1(1 − χ) − κ0χ)(1 + u0)
m0(1 + v0)

n0 , and (3.33d)

g2 = −(1 − χ)(1 + u0)
m0(1 + v0)

n0 λκ1

1 − μv0

(
u0 − μv0

1 − μv0

)
(3.33e)

in (3.27) and (3.28).

3.4.2 Inverse transformation

Since the (t, u, v)-coordinate space is foliated by the characteristics of the operator
∂t + v∂v + γ u∂u − γμ(u + 1)v∂u , any point (t, u, v) lies on a unique characteristic.
Flowing backward along that characteristic to its intersection with the {t = 0}-plane,
we can determine the corresponding base point (0, u0, v0) by inverting the relations
in (3.10). Since the dynamics of the v-coordinate do not depend on u, we may use
(2.56) to express v0 in terms of t and v only. Taking the resulting expression as input
for inverting (3.10a), we obtain the inverse characteristic transformation

(t, u, v) �→ (u0(t, u, v), v0(t, v)) , (3.34)

with

u0(t, u, v) = e−γ (t+μve−t )
{
u eγμv − (−γμv)γ

[
�(1 − γ,−γμve−t )

−�(1 − γ,−γμv)
]}

and (3.35a)

v0(t, v) = ve−t . (3.35b)

Under Assumption 3.1, we can employ the power series expansion in (3.15), in com-
bination with the recursive set of ODEs in (3.16) and initial conditions as in (3.17),
as an alternative to (3.35a) to obtain u0 as a function of u, v (or v0), and σ . Rewriting
the result as a power series in ε, we find

u0(σ, u, v) = μv

1 − μv
+ e(μv−1)σ

(
u − μv

1 − μv

)

− εμv

[
e(μv−1)σ − 1

(1 − μv)3
+ σ

(1 − μv)2
+ σ 2

2
e(μv−1)σ

(
u − μv

1 − μv

)]

+ O(ε2); (3.36)
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naturally, (3.14) gives rise to

v0(σ, v) = v0

∞∑

n=0

εn
(−σ)n

n! . (3.37)

Since the independent variable in (3.16) is σ , and since s is naturally identified with
t , we replace σ with t

ε
in (3.36) to obtain a perturbative expansion for u0(t, u, v).

The solution to the PDE system (3.6) can now be found to satisfactory order in ε

by applying the inverse transformation in (3.34) to the solutions given in (3.27) and
(3.28), taking into account the values of fi and gi in (3.33). In other words,

F ( j)(u, v, t) [as solution to (3.6)] =
[ ∞∑

n=0

εn
[
F ( j)
n

]

(u0,v0)=(u0(σ,u,v),ve−εσ )

]

σ= t
ε

,

(3.38)
where F ( j)

n ( j = 0, 1) on the right-hand side of the above expression denotes the
solution to Eqs. (3.23a)–(3.26), with initial conditions as in (3.32).

Remark 3.5 The absence of any detailed analysis of the characteristic system in its
slow formulation, Eq. (3.12), can be argued as follows, by considering the correspond-
ing phase space, as depicted in Fig. 7.

(a) For arbitrary initial conditions (u0, v0), the dominant dynamics are fast, since the
critical manifold C0 is normally repelling. In other words, solutions are generally
repelled away from C0 under the fast dynamics.

(b) All orbits that have their initial conditions on the same Fenichel fibre are expo-
nentially close (in ε) to each other near the slow manifold Cε that is associated to
the critical manifoldC0. Therefore, flowing backward from (u, v) to (u0, v0)—as
expressed through the inverse transformation in (3.34) that yields the correspond-
ingPDEsolution—may introduce exponentially large terms in the transformation,
precluding any sensible series expansion.

Thus, although the construction of a composite ‘(initially) slow—(ultimately) fast’
expression of F ( j) as a solution to systems (3.12) and (3.13) certainly makes sense
from a dynamical systems perspective, the extreme lack of sensitivity of orbits on their
initial conditions (u0, v0) may prevent such a composite expansion from being useful
for obtaining solutions to the original PDE system (3.6).

Remark 3.6 In Sect. 3.3, explicit expressions are given for the expansion of F (0) up to
O(ε2) only, cf. (3.27); similarly, F (1) is approximated to O(ε) in (3.28), for the sake
of brevity. It is worthwhile to note that a lower bound on the order of the expansion is
stipulated by the application; recall Sect. 1.1: the sampling time �t can be considered
as aminimum time interval overwhich the results of our analysis should be (reasonably)
accurate. To that end, we have to compare �t with ε = 1

γ
, the parameter defining the

fast time scale on which the above analytical results have been derived. We can then
apply the classical theory of Poincaré expansions (Verhulst 2000) to infer that, if for
example �t = O(1)—which implies �t = O(ε−1) in the fast time variable σ—the
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generating functions F ( j ) should at least be expanded up to O(ε2) for the resulting
approximation to be accurate to O(ε).

3.5 Autoregulation

The inclusion of any type of autoregulation into system (3.6)—which is equivalent to
the addition of model terms from Table 2 to the right-hand sides of the corresponding
equations—precludes the direct application of the method of characteristics, as the
resulting partial differential operators in Eqs. (3.6a) and (3.6b) do not coincide any-
more. To resolve that complication, we follow the approach of Sect. 2, making the
following assumption:

Assumption 3.7 We assume that the autoregulation rates aM , rM , aP , and rP , as
defined in (3.2), are small in comparison with the protein decay rate d1; specifically,
we write

aM = αM d1 δ, rM = ρM d1 δ, aP = αP d1 δ, and rP = ρP d1 δ, (3.39)

where 0 < δ < 1 is sufficiently small.

Next, we expand the generating functions F ( j) ( j = 0, 1) as power series in δ;
recall (2.11):

F ( j)(z, w, t) =
∞∑

m=0

δmF ( j)
m (z, w, t). (3.40)

To demonstrate the procedure, we include mRNA autoactivation in (3.6), see again
Table 2; the analysis of the remaining autoregulatory mechanisms can be performed
in a similar fashion. Substitution of (3.40) now yields

[
∂t + (z − 1)∂z + γ (w − 1)∂w − γμ(z − 1)w∂w

]
F (0)
m

= −κ0F
(0)
m + κ1F

(1)
m − αMw∂wF (0)

m−1, (3.41a)
[
∂t + (z − 1)∂z + γ (w − 1)∂w − γμ(z − 1)w∂w

]
F (1)
m

= κ0F
(0)
m − κ1F

(1)
m + λ(w − 1)F (1)

m + αMw∂wF (0)
m−1; (3.41b)

cf. (2.12). System (3.41) is then amenable to the method of characteristics. In fact,
employing the same characteristics as in the unperturbed setting, recall (3.7), we find

∂t + (z − 1)∂z + γ (w − 1)∂w − γμ(z − 1)w∂w = ∂s, (3.42)

while the partial differential operators in Table 2 transform into

w∂w = (u + 1)

(
∂u

∂u0

)−1

∂u0 and (3.43a)
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z∂z = (v + 1)

(
∂v

∂v0

)−1
[
−

(
∂u

∂v0

) (
∂u

∂u0

)−1

∂u0 + ∂v0

]
; (3.43b)

here, u(s; u0, v0) and v(s; v0) are as given in (3.10). Thus, the mRNA autoactivation
system (3.41) transforms to

∂s F
(0)
m = −κ0F

(0)
m + κ1F

(1)
m − αM (u + 1)

(
∂u

∂u0

)−1

∂u0F
(0)
m−1, (3.44a)

∂s F
(1)
m = κ0F

(0)
m − κ1F

(1)
m + λ uF (1)

m + αM (u + 1)

(
∂u

∂u0

)−1

∂u0F
(0)
m−1. (3.44b)

To obtain explicit solutions to system (3.44), we adopt Assumption 3.1 and revert to
the fast time scale σ = s

ε
to write the dynamical system (3.44) as a second-order ODE

for F (0)
m , which yields

[
∂2σ + ε(κ0 + κ1 − λu)∂σ − ε2κ0λu

]
F (0)
m

= (
ε2λu − ε∂σ

)
αM (u + 1)

(
∂u

∂u0

)−1

∂u0F
(0)
m−1. (3.45)

Using (3.44), we can express F (1)
m in terms of F (0)

m as

F (1)
m = 1

εκ1

[
∂σ F

(0)
m + εκ0F

(0)
m + εαM (u + 1)

(
∂u

∂u0

)−1

∂u0F
(0)
m−1

]
. (3.46)

To solve (3.45) (recursively), we expand F ( j)
m ( j = 0, 1) in powers of ε:

F ( j)
m (σ ) =

∞∑

n=0

εn F ( j)
m,n(σ ); (3.47)

recall Eq. (3.22). Together with the series expansion for u in (3.15), we thus obtain

∂2σ F
(0)
m,0 = 0, (3.48)

∂2σ F
(0)
m,1 = −(κ0 + κ1 − λû0)∂σ F

(0)
m,0 − ∂σGm−1,0, (3.49)

and

∂2σ F
(0)
m,n + (κ0 + κ1 − λû0)∂σ F

(0)
m,n+1 − λ

n∑

k=0

(
ûn+1−k∂σ + κ0 ûn−k

)
F (0)
m,k

= −∂σG
(0)
m−1,n+1 + λ

n∑

k=0

ûn−kG
(0)
m−1,k (3.50)
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for n ≥ 2; compare with Eqs. (3.23a), (3.23b), and (3.24). The coefficients G(0)
m,n in

the above expression are defined from an expansion of the autoregulation term as

αM (u + 1)

(
∂u

∂u0

)−1

∂u0F
(0)
m−1 =

∞∑

n=0

εnG(0)
m−1,n(u0, σ ). (3.51)

From (3.46), we obtain
∂σ F

(0)
m,0 = 0 (3.52)

and

F (1)
m,n = 1

κ1
∂σ F

(0)
m,n+1 + κ0

κ1
F (0)
m,n + 1

κ1
G(0)

m−1,n (3.53)

for n ≥ 0; recall (3.25) and (3.26). To solve Eqs. (3.48) through (3.53) iteratively,
we fix m—the order of the expansion in δ—and determine the solution to satisfactory
order in n, the order of the expansion in ε. Then, we increase m to m + 1 and take
the result as input for the dynamics at order m + 1. The resulting repeated iteration
procedure yields an explicit expression for the generating functions F ( j) ( j = 0, 1)
as double asymptotic series in both δ and ε.

The determination of appropriate initial conditions is largely analogous to the non-
autoregulated case; see Sect. 3.4.1. However, with the inclusion of autoregulation
into model B, we need to incorporate the possibility that χ(m0, n0) depends on the
corresponding autoregulation rates. As in the case of model A, we expand χ(m0, n0)
as a power series in δ:

χ(m0, n0) =
∞∑

m=0

δmχm(m0, n0); (3.54)

recall (2.51). In that case, the initial conditions for F ( j)
m,n can be inferred from (3.32)

to give

[
F (0)
m,0

]

σ=0
= χm(1 + u0)

m0(1 + v0)
n0 for all m ≥ 0, (3.55a)

[
F (1)
0,0

]

σ=0
= (1 − χ0)(1 + u0)

m0(1 + v0)
n0 , (3.55b)

[
F (1)
m,0

]

σ=0
= −χm(1 + u0)

m0(1 + v0)
n0 for all m ≥ 1, and (3.55c)

[
F ( j)
m,n

]

σ=0
= 0 for all m ≥ 0 and n ≥ 1, with j = 0, 1. (3.55d)

Solutions to Eqs. (3.48)–(3.53) that incorporate the conditions in (3.55) for all types of
autoregulation introduced in (3.2) can be found in Appendix B. Finally, our previous
results on the inverse characteristic transformation in the non-autoregulated case from
Sect. 3.4.2 can now be applied in a straightforward fashion to give solutions to the
PDE system (3.6) with added autoregulation.
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3.6 Summary of main result

To summarise Sect. 3, we combine the analysis of the previous subsections to state
our main result.

Main result: The PDE system (3.6) can be solved for sufficiently large values of γ ;
see Assumption 3.1. Its solutions F ( j)(w, z, t) ( j = 0, 1) are expressed as power
series in the small parameter ε = 1

γ
; cf. (3.22). The coefficients F ( j)

n (w, z, t) in these
series, written in terms of the shifted variables u and v defined in (3.8), can be found
by

(1) solving recursively the second-order ODEs (3.23a) through (3.24) and using the
identities in (3.25) and (3.26), incorporating the initial conditions in (3.32);

(2) subsequently applying the inverse transformations in (3.36) and (3.37) to the
resulting solutions;

(3) and, finally, substituting σ = t
ε
.

To illustrate the procedure described above, we state the resulting explicit expres-
sions for the leading-order solution to (3.6) in terms of the original variables w, z, and
t here:

F (0)
0 (w, z, t) = χ

[
1 + (z − 1)e−t ]n0

{
1

1 + μ(1 − z)
+ e−[1+μ(1−z)] t

ε

×
[
w − 1

1 + μ(1 − z)

]}m0

and (3.56a)

F (1)
0 (w, z, t) = 1 − χ

χ
F (0)
0 (w, z, t). (3.56b)

Note that the sum F (0)
0 +F (1)

0 corresponds precisely to the leading-order fast expansion
found in Equation (21) of Bokes et al. (2012b).

If autoregulation as in (3.2) is incorporated into model B, the main result can be
formulated as follows.

Main result (autoregulatory extension): The PDE system (3.6) incorporating any one
type of autoregulation from Table 2 can be solved as long as γ is sufficiently large
and δ is sufficiently small; see Assumptions 3.1 and 3.7, respectively. Its solutions
F ( j)(w, z, t) ( j = 0, 1) are expressed as double power series in the small parameters
δ and ε, viz.

F ( j) =
∞∑

m=0

∞∑

n=0

δmεn F ( j)
m,n . (3.57)

The coefficients F ( j)
m,n in these series, written in terms of the shifted variables u and v

defined in (3.8), can be found by

(1a) solving recursively the second-order ODEs (3.48) through (3.50) for fixed m
and using the identities in (3.52) and (3.53), incorporating the initial conditions
in (3.55);
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(1b) increasing m to m + 1, and repeating step (1a) until a sufficient accuracy in δ

(and ε) is attained;
(2) subsequently applying the inverse transformations in (3.36) and (3.37) to the

resulting solutions;
(3) and, finally, substituting σ = t

ε
.

4 From generating function to propagator

The final step in our analytical method consists in reconstructing the probabilities
P( j)
n (model A) and P( j)

m,n (model B), respectively, from the explicit expressions for
the associated generating functions F ( j) ( j = 0, 1), which were the main analytical
outcome of Sects. 2 and 3.

In principle, the relation between probabilities and probability-generating functions
is clear from the definition of the latter, and is given in (2.6) and (3.5), respectively.
Specifically, probabilities can be expressed in terms of derivatives of their generating
functions as follows:

P( j)
n (t) = 1

n!
[

∂n

∂zn
F ( j)(z, t)

]

z=0
(model A), (4.1a)

P( j)
m,n(t) = 1

m!n!
[

∂m+n

∂wm∂zn
F ( j)(w, z, t)

]

(w,z)=(0,0)
(model B). (4.1b)

However, explicit expressions for the nth and (m + n)th order derivatives, respec-
tively, of these generating functions become progressively unwieldy with increasing
m and n. Indeed, from the expressions for the generating functions F ( j) obtained previ-
ously, which combine (2.26) for specific initial conditions as in (2.54) with the inverse
characteristic transformation in (2.56), it is clear that finding explicit expressions for
derivatives of arbitrary order is very difficult indeed, if it is possible at all.1

To complete successfully the final step towards approximating propagators for
parameter inference in the present setting, we abandon the requirement of deriving
explicit expressions for the probabilities P( j)

n and P( j)
m,n . Instead, we use the standard

Cauchy integral formula for derivatives of holomorphic functions to write

P( j)
n (t) = 1

2π i

∮

γA

F ( j)(z, t)

zn+1 dz (model A), (4.2a)

P( j)
m,n(t) = 1

(2π i)2

�
γB

F ( j)(w, z, t)

wm+1zn+1 dwdz (model B); (4.2b)

here, γA is a suitably chosen contour around z = 0, while γB is a (double) contour
around (w, z) = (0, 0).

1 In some specific cases, however, such explicit expressions can be found; see e.g. Popović et al. (2016).
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The above expression of probabilities as integrals is well suited for an efficient
numerical implementation, which is naturally incorporated into the realisation of the
parameter inference scheme discussed in Sect. 1. From a numerical perspective, the
integral formula in (4.2) has the additional advantage that the values of F ( j) on (a
discretisation of) the integral contours γA and γB , respectively, only have to be deter-
mined once to yield propagators for any values of m and n and fixed initial states m0
and n0. Moreover, we are free to choose the integration contours γA and γB , which
allows us to accelerate the calculation of these integrals; see Bornemann (2011). Here,
we note that the choice of circular integration contours with unit radius, and subse-
quent discretisation of those contours as M-sided and N -sided polygons, respectively,
coincides with the ‘Fourier mode’ approach, as presented by Bokes et al. (2012a).

Remark 4.1 By introducing the Cauchy integral formula for derivatives of holomor-
phic functions in (4.2), we implicitly assume that the integration contours γA and γB

are chosen such that they lie completely within the open neighbourhoods of the origin
in C and C

2, respectively, where the canonical complex extensions of the generating
functions F ( j)—which exist by the Cauchy-Kowalevski theorem—are holomorphic.
In other words, γA and γB must be chosen such that any poles of F ( j) lie outside of
these integration contours. The expansion for u0 in (3.36) shows that this is not a moot
point: the generating functions F ( j) resulting for model B, as established in Sect. 3,
will generically have a pole at v = 1

μ
, i.e. at z = 1 + 1

μ
. As μ is positive, by (3.4),

choosing the z-contour of γB to be a circle with at most unit radius allows us to avoid
that pole.

4.1 Incorporation of χχχ

In the course of the analysis presented in Sects. 2 and 3, the introduction of the
parameter χ was necessary to obtain definite, explicit expressions for the generating
functions as solutions to the PDE systems (2.7), (2.8), and (3.6); see Definitions 2.4
and 3.4. The successful implementation of these expressions in a parameter inference
scheme requires us to decide how to incorporate that new parameter. We identify three
options here.

1. Before implementing parameter inference,we canmarginalise over the newparam-
eterχ to eliminate it altogether, using a predeterminedmeasure dμ(χ), which adds
an additional integration step to the requisite numerical scheme.

2. We canmake a choice forχ that is based on the specifics of themodel under consid-
eration. Thus, exploiting the Markov property of the stochastic models underlying
(2.3), (2.5), and (3.3), we may use the switching rates and any autoregulation rates
to express χ in model A as

χ(n0) = cb
cb + c f + an0

(autoactivation), (4.3a)

χ(n0) = cb + rn0
cb + rn0 + c f

(autorepression); (4.3b)
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the corresponding expressions for model B read

χ(m0, n0) = k1
k0 + k1

(no autoregulation), (4.4a)

χ(m0, n0) = k1
k0 + k1 + aMm0

(mRNA autoactivation), (4.4b)

χ(m0, n0) = k1 + rMm0

k0 + k1 + rMm0
(mRNA autorepression), (4.4c)

χ(m0, n0) = k1
k0 + k1 + aPn0

(protein autoactivation), (4.4d)

χ(m0, n0) = k1 + rPn0
k0 + k1 + rPn0

(protein autorepression). (4.4e)

3. We can determine χ ‘experimentally’ by including the latter in the parameter set
that is to be inferred in the (numerical) process of parameter inference.

Note that step 2 has been anticipated in the analysis of model A, by introducing the
series expansion in (2.51). Indeed, by Assumption 2.2, we can expand χ(n0) as

χ = κb

κb + κ f + δαn0
= κb

κ f + κb

∞∑

m=0

δm
( −αn0

κ f + κb

)m

(autoactivation), (4.5a)

χ = κb + δρn0
κb + κ f + δρn0

= κb

κ f + κb
− κ f

κ f + κb

∞∑

m=1

δm
( −ρn0

κ f + κb

)m

(autorepression). (4.5b)

Likewise, when autoregulation is added tomodel B, Assumption 3.7 implies an expan-
sion for χ(m0, n0) of the form

χ = κ1

κ0 + κ1 + δαMm0

= κ1

κ0 + κ1

∞∑

m=0

δm
(−αMm0

κ0 + κ1

)m

(mRNA autoactivation), (4.6a)

χ = κ1 + δρMm0

κ0 + κ1 + δρMm0

= κ1

κ0 + κ1
− κ0

κ0 + κ1

∞∑

m=1

δm
(−ρMm0

κ0 + κ1

)m

(mRNA autorepression), (4.6b)

χ = κ1

κ0 + κ1 + δαPn0

= κ1

κ0 + κ1

∞∑

m=0

δm
( −αPn0

κ0 + κ1

)m

(protein autoactivation), (4.6c)
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χ = κ1 + δρPn0
κ0 + κ1 + δρPn0

= κ1

κ0 + κ1
− κ0

κ0 + κ1

∞∑

m=1

δm
( −ρPn0

κ0 + κ1

)m

(protein autorepression). (4.6d)

5 Discussion and outlook

In the present article, we have developed an analytical method for obtaining explicit,
fully time-dependent expressions for the probability-generating functions that are
associated to models for stochastic gene expression. Moreover, we have presented
a computationally efficient approach which allows us to derive model predictions (in
the form of propagators) from these generating functions, using the Cauchy integral
formula. It is important to note that our method does not make any steady-state or
long-evolution-time approximations. On the contrary, the perturbative nature of our
approach naturally optimises its applicability over relatively short (or intermediate)
time scales; see also Remark 3.6. As is argued in Sect. 1.1, such relatively short evolu-
tion times naturally occur in the calculation of quantities such as the log-likelihood, as
defined in Eq. (1.1). Therefore, our analytical approach is naturally suited to an imple-
mentation in a Bayesian parameter inference scheme, such as is outlined in Sect. 1.1.

As mentioned in Sects. 2.2 and 3.3, the introduction of Assumptions 2.2 and 3.7
in our analysis of the systems of PDEs and ODEs that are obtained via the generating
function approach is necessary for determining explicit expressions for the gener-
ating functions themselves. Therefore, we can only be certain of the validity of our
approach if we assume that the autoregulation rates are small in comparison with other
model parameters, as is done there. Moreover, in the analysis of model B, we have
to assume that the protein decay rate is smaller than the decay rate of mRNA; recall
Assumption 3.1. That assumption is valid for a large class of (microbial) organisms
(Shahrezaei and Swain 2008a; Yu et al. 2006); however, it is by no means generic, as
the two decay rates are often comparable in mammalian cells (Schwanhäusser et al.
2011; Vogel and Marcotte 2012). Since the accuracy of approximation of the explicit
expressions for the generating functions derived here is quantified in terms of orders
of the perturbation parameter(s), see e.g. Remark 3.6, violation of Assumption 2.2,
3.1, or 3.7 will decrease the predictive power of the results obtained by the application
of the analytical method developed in the article.

The method which is described in Sect. 1.2, and outlined visually in Fig. 5, hence
provides a generic framework for the analysis of stochastic gene expression models
such as model A (Fig. 3 and Sect. 2.1) and model B (Fig. 4 and Sect. 3.1). Note
that, for example, the steady-state and long-evolution-time approximations derived by
Shahrezaei and Swain (2008a) could be extended to autoregulatory systems via the
same approach. However, as is apparent from the (differences between the) analysis
presented in Sects. 2 and 3, the ‘path to an explicit solution’ is highlymodel-dependent.
The decision on which analytical techniques to apply, such as the perturbative expan-
sion postulated in (3.22), has to be made on a case-by-case basis. The success of
the method presented in the article fully depends on whether the resulting dynamical
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systems can be solved explicitly. To that end, it is highly beneficial that the systems
(2.19) and (3.19) obtained here are linear, which is a direct consequence of the fact
that all reactions described in the reaction schemes in (2.1) and (2.2), as well as in (3.1)
and (3.2), are of first order. Inclusion of second-order reactions would introduce both
nonlinear terms and second-order differential operators in the PDE systems for the
corresponding generating functions, which would severely increase the complexity of
these systems, thus preventing us from obtaining explicit solutions.

The method presented in this article, and the results thus obtained, can be seen,
first and foremost, as the natural extension of previous work by Popović et al. (2016).
Analytical results for the classes of models studied here can be found in several earlier
articles. We mention the article by Shahrezaei and Swain (2008a), where a leading-
order approximation was obtained in a long-evolution-time and steady-state limit.
Bokes et al. (2012a) derived analytical expressions for stationary distributions in a
model that is equivalent to that considered by Popović et al. (2016). Also for that
model, a time-scale separation was exploited by Bokes et al. (2012b), in a manner that
is similar to the present article, to obtain leading-order analytical expressions on both
time scales. Themodel that is referred to asModelA inSect. 2was analysed in a steady-
state setting by Iyer-Biswas and Jayaprakash (2014) via the Poisson integral transform.
A similar model was studied by Hornos et al. (2005), were a generating function
approach was used; making a steady-state Ansatz, the authors were able to obtain an
explicit solution for the generating function in terms of special (Kummer) functions;
see also NIST Digital Library of Mathematical Functions. The same model was later
solved in a fully time-dependent context by Ramos et al. (2011), after a cleverly chosen
variable substitution, in terms of another class of special (Heun) functions; cf. again
NIST Digital Library of Mathematical Functions.

Other authors have attempted to solve several classes of CMEs directly, i.e. without
resorting to generating function techniques or integral transforms.A noteworthy exam-
ple is the work of Jahnke and Huisinga (2007) on monomolecular systems. Another,
more recent example can be found in the work by Iserles and MacNamara (2017),
where exact solutions are determined for explicitly time-dependent isomerisationmod-
els.

It is important to emphasise that the ‘time dependence’ referred to in the title of the
present article is solely due to the dynamic nature of the underlying stochastic process,
and that it hence manifests exclusively through time derivatives in the associated
CMEs, such as e.g. in (2.3). In particular, none of the model parameters are time-
dependent, as opposed to, for example, the system studied by Iserles and MacNamara
(2017). The inclusion of such explicitly time-dependent parameterswould be a starting
point for incorporating the influence of (extrinsic) noise in the context of the model
categories considered in the article.

The availability of analytical expressions for generating functions does, in prin-
ciple, allow one to try to obtain insight into the underlying processes by studying
the explicit form of said expressions, as has been done e.g. by Bokes et al. (Bokes
et al. 2012a, b). However, the complex nature of the processes we analyse here seems
to preclude such insights. For example, the integrals over confluent hypergeomet-
ric functions, which appear in (2.29), cannot themselves be efficiently expressed in
terms of (other) special functions. Still, that complication does not necessarily pose
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an obstacle to the application we ultimately have in mind, i.e. to Bayesian param-
eter inference. As the last step in our method—the extraction of propagators from
generating functions, see Sect. 4—is numerical, the precise functional form of the
generating function is not of importance. The mere fact that an explicit expression
can be obtained is sufficient for the application of the Cauchy integral formula, where
these generating functions enter into the calculation of the appropriate integrals; see
again Sect. 4.

The analytical approach explored in the article does not, of course, represent the
only feasible way of obtaining numerical values for propagator probabilities, which
can, in turn, serve as input for a Bayesian parameter inference scheme. For an exam-
ple of a direct numerical method in which the Cauchy integral plays a central role,
the reader is referred to the work by MacNamara (2015). Our main motivation for
pursuing an analytical alternative is reducing the need for potentially lengthy numer-
ical simulations. An efficient implementation of the resulting expressions can result
in (significantly) reduced computation times; see, for example, the work by Borne-
mann (2011). The optimisation of the underlying numerical procedures is, however,
beyond the scope of the present article in particular, and of our research programme
in general.

The analytical results obtained thus far, as presented in the article, are ready for
implementation in a Bayesian parameter inference framework. An analysis of the
performance of the resulting approximations to the associated generating functions
in the spirit of the article by Feigelman et al. (2015), where parameter infer-
ence is tested on simulated data based on specific stochastic models, is ongoing
work. Moreover, the successful application of our analytical method to specific
model categories, such as are represented by model A and model B, suggests sev-
eral feasible expansions of the ‘model library’ for which explicit expressions for
the corresponding generating functions can be constructed. Thus, stochastic mod-
els comprised of multiple proteins represent a natural next stage, bringing the
analysis of toggle switch-type models within reach. In addition, one could begin
exploring the vast field of gene regulatory networks by considering a simple two-
protein systemwith, for example, activator-inhibitor interaction.Under the assumption
of small interaction rates, the resulting PDE system for the associated generat-
ing function would be directly amenable to the analytical method described in
the article. The analysis of these and similar systems could be a topic for future
research.
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A Model A: explicit expressions

An explicit expression for (2.27) can be stated as follows:

F (1)
0 (w) = 1

κb

(
w

d

dw
F (0)
0 + κ f F

(0)
0

)

= c1
κ f

κb

(
1F1(κ f , 1 + κ f + κb, w)

+ w

1 + κ f + κb
1F1(1 + κ f , 2 + κ f + κb, w)

)

− c2w
−κ f −κb

(
1F1(−κb, 1 − κ f − κb, w)

+ w

1 − κ f − κb
1F1(1 − κb, 2 − κ f − κb, w)

)
, (A.1)

which can be shown to be equal to (2.35) using §13.3(i) of NIST Digital Library of
Mathematical Functions when ĉ1 = c1

κ f
κb

and ĉ2 = c2. Explicit expressions involving
the integration limits c3 and c4 in (2.29), respectively, are obtained as

∫ λv0

c3
1F1(−κb, 1 − κ f − κb, ŵ) g(ŵ) dŵ

= e−λv0

{
χ1(1 + v0)

n0 λv0κb

1 − κ f − κb
1F1(1 − κb, 2 − κ f − κb, λv0)

−1F1(−κb, 1 − κ f − κb, λv0)
[
α(w + λ)

(
∂w + v0

w
∂v0

)
F (0)
0

]

w=λv0

}
(A.2)

and

∫ λv0

c4
1F1(κ f , 1 + κ f + κb, ŵ)

g(ŵ)

ŵ−κ f −κb
dŵ

= −e−λv0(λv0)
κ f +κb

{
χ1(1 + v0)

n0(κ f + κb)1F1(κ f , 1 + κ f + κb, λv0)

+χ1(1 + v0)
n0

λv0κ f

1 + κ f + κb
1F1(1 + κ f , 2 + κ f + κb, λv0)

+1F1(κ f , 1 + κ f + κb, λv0)
[
α(w + λ)

(
∂w + v0

w
∂v0

)
F (0)
0

]

w=λv0

}
, (A.3)

respectively, with F (0)
0 as in (2.26). Similarly, explicit expression that involve the

integration limits ĉ3 and ĉ4 in (2.38), respectively, read

∫ λv0

ĉ3
1F1(1 − κb, 1 − κ f − κb, ŵ) h(ŵ) dŵ
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= −e−λv0

{
χ1(1 + v0)

n0λv0 1F1(1 − κb, 1 − κ f − κb, λv0)

−χ1(1 + v0)
n0 λv0(1 − κb)

1 − κ f − κb
1F1(2 − κb, 2 − κ f − κb, λv0)

+1F1(1 − κb, 1−κ f − κb, λv0)
[
ρ(w+λ)

(
∂w+v0

w
∂v0

)
F (1)
0

]

w=λv0

}
(A.4)

and

∫ λv0

ĉ4
1F1(κ f , 1 + κ f + κb, ŵ)

h(ŵ)

ŵ−κ f −κb
dŵ

= e−λv0(λv0)
κ f +κb

{
χ1(1 + v0)

n0(κ f + κb − λv0)1F1(1 + κ f , 1 + κ f +κb, λv0)

+χ1(1 + v0)
n0

λv0(1 + κ f )

1 + κ f + κb
1F1(2 + κ f , 2 + κ f + κb, λv0)

+1F1(1 + κ f , 1 + κ f + κb, λv0)
[
ρ(w + λ)

(
∂w + v0

w
∂v0

)
F (1)
0

]

w=λv0

}
,

(A.5)

respectively, with F (1)
0 as in (2.35).

B Model B with autoregulation: explicit expressions

To leading order in δ, i.e. form = 0, the right-hand side of Eq. (3.45) vanishes; hence,
the expressions in Eqs. (3.20) and (3.21) apply. In other words, we can identify F ( j)

0,n

with F ( j)
n as given in (3.27) and (3.28), for j = 0, 1 and n = 0, 1, 2. The free constants

fi and gi are as stated in (3.33), with χ replaced with χ0. In the following sections,
we present explicit expressions for the first-order correction in δ—i.e. form = 1—for
all autoregulatory scenarios listed in (3.2).

B.1 mRNA autoactivation

We can solve (3.45) to second order in ε, i.e. for n = 2, applying the initial conditions
in (3.55) to obtain

F (0)
1,0 = h0,M , (B.1)

F (0)
1,1 = h1,M + j1,Mσ + αMχ0m0(1 + u0)

m0−1(1 + v0)
n0 e

−(1−μv0)σ

(1 − μv0)2
, and

(B.2)

F (0)
1,2 = h2,M + j2,Mσ (B.3)
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+ αMm0(1 + u0)
m0−1(1 + v0)

n0κ1

[
e−(1−μv0)σ

1 − μv0

(
1

1 − μv0
+ σ

)

−σ 2

2
(1 − μv0)

(
u0 − μv0

1 − μv0

)]

+ αMm0(1 + u0)
m0−1(1 + v0)

n0χ0

{
e−(1−μv0)σ

1 − μv0

[
3μv0

(1 − μv0)2

−σ

(
κ0 + κ1 − 2μv0

1 − μv0

)
+ σ 2

2
μv0

]

+ σ 2(κ0 + κ1)(1 − μv0)

(
u0 − μv0

1 − μv0

)}

− (1 + u0)
m0(1 + v0)

n0χ1

[
λκ1e(1−μv0)σ

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+σ 2

2

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

, (B.4)

which yields

F (1)
1,0 = 1

κ1

[
j1,M + κ0h0,M + αMm0χ0(1 + u0)

m0−1(1 + v0)
n0

(
u0 − μv0

1 − μv0

)]

and (B.5)

F (1)
1,1 = j2,M + κ0(h1,M + j1,Mσ)

κ1

− χ1

κ1
(1 + u0)

m0(1 + v0)
n0

[
λκ1e(1−μv0)σ

1 − μv0

(
u0 − μv0

1 − μv0

)

+σ

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

− αM
χ0

κ1
m0(1 + u0)

m0−1(1 + v0)
n0

[
μv0

(1 − μv0)3
+ κ1e−(1−μv0)σ

(1 − μv0)2

−σ(κ0 + κ1)

(
u0 − μv0

1 − μv0

)]
, (B.6)

where

h0,M = χ1(1 + u0)
m0(1 + v0)

n0 , (B.7)

h1,M = −αMχ0m0(1 + u0)
m0−1(1 + v0)

n0 1

(1 − μv0)2
, (B.8)

j1,M = −χ1(κ0 + κ1)(1 + u0)
m0(1 + v0)

n0

+ αMχ0m0(1 + u0)
m0−1(1 + v0)

n0

(
u0 − μv0

1 − μv0

)
, (B.9)
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h2,M = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

− αMm0(1 + u0)
m0−1(1 + v0)

n0 1

(1 − μv0)3

(
κ1 + 3χ0μv0

1 − μv0

)
, and

(B.10)

j2,M = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

1 − μv0

(
u0 − μv0

1 − μv0

)

+ αMχ0m0(1 + u0)
m0−1(1 + v0)

n0 1

(1 − μv0)2

(
κ0 + κ1 + μv0

1 − μv0

)
.

(B.11)

B.2 mRNA autorepression

For the case of mRNA autorepression, we replace αM (u + 1)
(

∂u
∂u0

)−1
∂u0F

(0)
m−1 in

Eqs. (3.45) and (3.46) with

− ρM (u + 1)

(
∂u

∂u0

)−1

∂u0F
(1)
m−1, (B.12)

which yields

F (0)
1,0 = k0,M , (B.13)

F (0)
1,1 = k1,M + l1,Mσ − ρM (1 − χ0)m0(1 + u0)

m0−1(1 + v0)
n0 e

−(1−μv0)σ

(1 − μv0)2
, and

(B.14)

F (0)
1,2 = k2,M + l2,Mσ

− ρMm0(1 + u0)
m0−1(1 + v0)

n0κ0

[
e−(1−μv0)σ

(1 − μv0)2

(
1

1 − μv0
+ σ

)

−σ 2

2

(
u0 − μv0

1 − μv0

)]

+ ρMm0(1 + u0)
m0−1(1 + v0)

n0(1 − χ0)

{
λe(1−μv0)σ

(1 − μv0)2

(
u0 − μv0

1 − μv0

)2

+ λe−(1−μv0)σ

(1 − μv0)3

(
u0 − μv0

1 − μv0

)
− (λ + 3)μv0e−(1−μv0)σ

(1 − μv0)4

− σ
e−(1−μv0)σ

(1 − μv0)2

[
(λ + 2)μv0

1 − μv0
− (κ0 + κ1)

]

− σ 2

2

[
μv0e−(1−μv0)σ

(1 − μv0)2
+

(
u0 − μv0

1 − μv0

) (
2(κ0 + κ1) − λμv0

1 − μv0

)] }
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− (1 + u0)
m0(1 + v0)

n0χ1

[
λκ1e(1−μv0)σ

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+σ 2

2

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

+ ρM (1 + u0)
m0(1 + v0)

n0(1 − χ0)
λ

(1 − μv0)2

×
[
e(1−μv0)σ

(
u0 − μv0

1 − μv0

)
+ e−(1−μv0)σ

1 − μv0

]
. (B.15)

Hence, it follows that

F (1)
1,0 = 1

κ1

[
l1M+κ0k0,M−ρMm0(1−χ0)(1+u0)

m0−1(1+v0)
n0

(
u0 − μv0

1 − μv0

)]

and (B.16)

F (1)
1,1 = l2,M + κ0(k1,M + l1,Mσ)

κ1

− χ1

κ1
(1 + u0)

m0(1 + v0)
n0

[
λκ1e(1−μv0)σ

1 − μv0

(
u0 − μv0

1 − μv0

)

+σ

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

+ ρM (1 + u0)
m0(1 + v0)

n0(1 − χ0)
λ

κ1(1 − μv0)

×
[(

u0 − μv0

1 − μv0

)
− 1

1 − μv0

]

+ ρM (1 − χ0)m0(1 + u0)
m0−1(1 + v0)

n0

[
e−(1−μv0)σ

(1 − μv0)2

− λ

κ1(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+ μv0

κ1(1 − μv0)3
+ λ

κ1(1 − μv0)

(
u0 − μv0

1 − μv0

)2

− σ

κ1
(κ0 + κ1)

(
u0 − μv0

1 − μv0

)]
, (B.17)

where

k0,M = χ1(1 + u0)
m0(1 + v0)

n0 , (B.18)

k1,M = ρM (1 − χ0)m0(1 + u0)
m0−1(1 + v0)

n0 1

(1 − μv0)2
, (B.19)

l1,M = −χ1(κ0 + κ1)(1 + u0)
m0(1 + v0)

n0
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− ρM (1 − χ0)m0(1 + u0)
m0−1(1 + v0)

n0

(
u0 − μv0

1 − μv0

)
, (B.20)

k2,M = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

− ρM (1 + u0)
m0+1(1 + v0)

n0(1 − χ0)
λ

(1 − μv0)2

+ ρM (1 + u0)
m0−1(1 + v0)

n0m0
κ0

(1 − μv0)3

+ ρMm0(1 + u0)
m0−1(1 + v0)

n0(1 − χ0)
1

(1 − μv0)2

×
[
(λ + 3)μv0

(1 − μv0)2
+ λ

1 − μv0

(
u0 − μv0

1 − μv0

)

− λ

(
u0 − μv0

1 − μv0

)2 ]
, and (B.21)

l2,M = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

1 − μv0

(
u0 − μv0

1 − μv0

)

− ρM (1 + u0)
m0(1 + v0)

n0(1 − χ0)
λ

1 − μv0

[(
u0 − μv0

1 − μv0

)
− 1

1 − μv0

]

− ρM (1 + u0)
m0−1(1 + v0)

n0m0(1 − χ0)
1

1 − μv0

×
[
κ0 + κ1 − 1

1 − μv0
+ 1

(1 − μv0)2
− λ

1 − μv0

(
u0 − μv0

1 − μv0

)

+ λ

(
u0 − μv0

1 − μv0

)2 ]
. (B.22)

B.3 Protein autoactivation

For the case of protein autoactivation, we replace αM (u + 1)
(

∂u
∂u0

)−1
∂u0F

(0)
m−1 in

Eqs. (3.45) and (3.46) with

αP (v + 1)

(
∂v

∂v0

)−1
[
−

(
∂u

∂v0

) (
∂u

∂u0

)−1

∂u0 + ∂v0

]
F (0)
m−1, (B.23)

which yields

F (0)
1,0 = h0,P , (B.24)

F (0)
1,1 = h1,P + j1,Pσ − αPχ0m0μ(1 + u0)

m0−1(1 + v0)
n0+1

×
[
e−(1−μv0)σ

(1 − μv0)3
+ σ 2

2

(
u0 − μv0

1 − μv0

) ]
, and (B.25)
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F (0)
1,2 = h2,P + j2,Pσ

+ αPn0(1 + u0)
m0(1 + v0)

n0−1 σ 2

2
{[2(κ0 + κ1)χ0 − κ1](1 + v0) + χ0}

− αPm0(1 + u0)
m0−1(1 + v0)

n0μ
e−(1−μv0)σ

(1 − μv0)4

×
[
κ1(1 + v0) + χ0

1 + 2v0 + μv0(5 + 4v0)

1 − μv0

]

+ αPm0(1 + u0)
m0−1(1 + v0)

n0σμ
e−(1−μv0)σ

(1 − μv0)3

×
{
−χ0

[1 + (3 + 2v0)μ]v0
1 − μv0

+ [(1 − χ0)κ1 − χ0κ0](1 + v0)

}

+ αPm0(1 + u0)
m0−1(1 + v0)

n0μ
σ 2

2

1

(1 − μv0)2

×
{

−χ0(1 + v0)
μv0e−(1−μv0)σ

1 − μv0
+ (1 + v0)[2(κ0 + κ1)χ0 − κ1]

+χ0
1 + μv20

1 − μv0

}

+ αPm0(1 + u0)
m0−1(1 + v0)

n0μ
σ 3

6

(
u0 − μv0

1 − μv0

)
{(1 + v0)

×[3χ0(κ0 + κ1) − 2κ1] + χ0(1 − v0)}

− (1 + u0)
m0(1 + v0)

n0χ1

{
λκ1e(1−μv0)σ

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+σ 2

2

[
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
]}

. (B.26)

Hence, it follows that

F (1)
1,0 =

(
1

κ1
j1,P + κ0h0,P

)
+ αPχ0

κ1
(1 + u0)

m0−1(1 + v0)
n0

{
m0μ(1 + v0)

(1 − μv0)2

+n0

[(
u0 − μv0

1 − μv0

)
+ 1

1 − μv0

]}
and (B.27)

F (1)
1,1 = j2,P + κ0(h1,P + j1,Pσ)

κ1
(B.28)

− χ1

κ1
(1 + u0)

m0(1 + v0)
n0

[
λκ1e(1−μv0)σ

1 − μv0

(
u0 − μv0

1 − μv0

)

+σ

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

+ αPn0(1 + u0)
m0(1 + v0)

n0σχ0
κ0 + κ1

κ1
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+ αPm0(1 + u0)
m0−1(1 + v0)

n0+1μχ0

κ1

[
κ1e−(1−μv0)σ

(1 − μv0)3
+ 1 + 2μv0

(1 − μv0)4

+σ
κ0 + κ1

(1 − μv0)2
+ κ1

σ 2

2

(
u0 − μv0

1 − μv0

)]
, (B.29)

where

h0,P = χ1(1 + u0)
m0(1 + v0)

n0 , (B.30)

h1,P = αPχ0m0μ(1 + u0)
m0−1(1 + v0)

n0+1 1

(1 − μv0)3
, (B.31)

j1,P = −χ1(κ0 + κ1)(1 + u0)
m0(1 + v0)

n0

− αPχ0(1 + u0)
m0(1 + v0)

n0

[
n0 + μm0

1 + v0

1 + u0

1

(1 − μv0)2

]
, (B.32)

h2,P = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+ αPm0(1 + u0)
m0−1(1 + v0)

n0 μ

(1 − μv0)4

×
[
(1 + v0)κ1 + χ0

1 + 2v0 + μv0(5 + 4v0)

1 − μv0

]
, and (B.33)

j2,P = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

1 − μv0

(
u0 − μv0

1 − μv0

)

+ αPχ0μm0(1 + u0)
m0−1(1 + v0)

n0+1 1

(1 − μv0)3

×
[
2 − (κ0 + κ1) − 3

1 − μv0

]
. (B.34)

B.4 Protein autorepression

For the case of protein autorepression, we replace αM (u + 1)
(

∂u
∂u0

)−1
∂u0F

(0)
m−1 in

Eqs. (3.45) and (3.46) with

− ρP (v + 1)

(
∂v

∂v0

)−1
[
−

(
∂u

∂v0

) (
∂u

∂u0

)−1

∂u0 + ∂v0

]
F (1)
m−1, (B.35)

which yields

F (0)
1,0 = k0,P , (B.36)

F (0)
1,1 = k1,P + l1,Pσ + ρP (1 − χ0)m0μ(1 + u0)

m0−1(1 + v0)
n0+1

×
[
e−(1−μv0)σ

(1 − μv0)3
+ σ 2

2

(
u0 − μv0

1 − μv0

)]
, and (B.37)
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F (0)
1,2 = k2,P + l2,Pσ

+ ρP (1 − χ0)λμ(1 + u0)
m0(1 + v0)

n0+1 1

(1 − μv0)3

×
[
e(1−μv0)σ

(
u0 − μv0

1 − μv0

)
− e−(1−μv0)σ

1 − μv0

]

+ ρP (1 − χ0)λn0(1 + u0)
m0(1 + v0)

n0e(1−μv0)σ (1 − μv0)

(
u0 − μv0

1 − μv0

)

+ ρPm0(1 + u0)
m0−1(1 + v0)

n0+1 1

(1 − μv0)3

κ0μe−(1−μv0)σ

1 − μv0

+ ρP (1 − χ0)m0(1 + u0)
m0−1(1 + v0)

n0+1 λμe(1−μv0)σ

(1 − μv0)3

(
u0 − μv0

1 − μv0

)

×
[

1

1 − μv0
−

(
u0 − μv0

1 − μv0

)]

+ ρPm0(1 + u0)
m0−1(1 + v0)

n0+1μe−(1−μv0)σ

(1 − μv0)4

×
[
−λ

(
u0 − μv0

1 − μv0

)
+ 6

1 − μv0
+ λμv0

1 − μv0
− 5 + 4v0

1 + v0

]

+ ρPσ λμm0(1 − χ0)(1 + u0)
m0−1(1 + v0)n0 + 1

e(1−μv0)σ

(1 − μv0)2

×
(
u0 − μv0

1 − μv0

)2

+ ρPσ μm0(1 + u0)
m0−1(1 + v0)n0

e−(1−μv0)σ

(1 − μv0)3

[
χ0(1 + v0)(κ0 + κ1)

− (1 + v0)κ1 + (1 − χ0)
v0 + μv0(3 + 2v0) + μv0λ(1 + v0)

1 − μv0

]

+ ρP
σ 2

2
(1 + u0)

m0(1 + v0)
n0+1(1 − χ0)

λμ

1 − μv0

×
[

1

1 − μv0
−

(
u0 − μv0

1 − μv0

)]

+ ρP
σ 2

2
n0(1 + u0)

m0(1 + v0)
n0

[
−(1 − χ0)

(
1

1 + v0
+ λμv0

1 − μv0

)

−(1 − 2χ0)(κ0 + κ1) − κ1] + ρP
σ 2

2
μm0(1 + u0)

m0−1(1 + v0)
n0+1

× (1 − χ0)
μv0e−(1−μv0)σ

(1 − μv0)3

+ ρP
σ 2

2
μm0(1 + u0)

m0−1(1 + v0)
n0

{
[−(1 − 2χ0)(κ0 + κ1) − κ1]
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1 + v0

(1 − μv0)2
− (1 − χ0)

1 + μv20

(1 − μv0)3
+ (1 − χ0)(1 + v0)

×
[

μv0

(1 − μv0)3
+ 1

1 − μv0

(
u0 − μv0

1 − μv0

)2
]}

+ ρP
σ 3

6
μm0(1 + u0)

m0−1(1 + v0)
n0

(
u0 − μv0

1 − μv0

)

×
[
(−(1 − 3χ0)(κ0 + κ1) − 2κ1)(1 + v0)

+ (1 − χ0)

(
v0 − 1 + 2λ

μv0(1 + v0)

1 − μv0

) ]

− (1 + u0)
m0(1 + v0)

n0χ1

[
λκ1e(1−μv0)σ

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

× +σ 2

2

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

. (B.38)

It follows that

F (1)
1,0 = 1

κ1

(
l1,P + κ0k0,P

)

− ρPm0(1 − χ0)(1 + u0)
m0−1(1 + v0)

n0 1

κ1

×
{
m0μ(1 + v0)

(1 − μv0)2
+ n0

[
1

1 − μv0
+

(
u0 − μv0

1 − μv0

)]}
and (B.39)

F (1)
1,1 = l2,M + κ0(k1,M + l1,Mσ)

κ1

+ ρP (1 − χ0)(1 + u0)
m0+1(1 + v0)

n0+1 λμ

κ1

1

(1 − μv0)2

+ ρPn0(1 − χ0)(1 + u0)
m0(1 + v0)

n0 1

κ1

×
[

λ

1 − μv0

(
u0 − μv0

1 − μv0

)
− (κ0 + κ1)σ

]

+ ρP μm0(1 − χ0)(1 + u0)
m0−1(1 + v0)

n0+1 1

κ1

×
{

− 3

(1 − μv0)4
+ 1

(1 − μv0)3

[
−κ1e

−(1−μv0)σ + 2

+2λ

(
u0 − μv0

1 − μv0

)]
− σ

κ0 + κ1

(1 − μv0)2
− σ 2

2
κ1

(
u0 − μv0

1 − μv0

) }
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− χ1

κ1
(1 + u0)

m0(1 + v0)
n0

×
[

λκ1e(1−μv0)σ

1 − μv0

(
u0 − μv0

1 − μv0

)
+ σ

(
λκ1μv0

1 − μv0
− (κ0 + κ1)

2
)]

,

(B.40)

where

k0,P = χ1(1 + u0)
m0(1 + v0)

n0 , (B.41)

k1,P = −ρP (1 − χ0)m0(1 + u0)
m0−1(1 + v0)

n0+1 μ

(1 − μv0)3
, (B.42)

l1,P = −χ1(κ0 + κ1)(1 + u0)
m0(1 + v0)

n0

− ρP (1 − χ0)(1 + u0)
m0(1 + v0)

n0

[
n0 + μm0

1 + v0

1 + u0

1

(1 − μv0)2

]
,

(B.43)

k2,P = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+ ρP (1 − χ0)(1 + u0)
m0(1 + v0)

n0+1 λμ

(1 − μv0)3

×
[

1

1 − μv0
−

(
u0 − μv0

1 − μv0

)]

− ρP (1 − χ0)n0(1 + u0)
m0(1 + v0)

n0 λ

(1 − μv0)2

(
u0 − μv0

1 − μv0

)

+ ρP (1 − χ0)m0μ(1 + u0)
m0−1(1 + v0)

n0+1 λ

(1 − μv0)3

×
[(

u0 − μv0

1 − μv0

)2

− μv0

(1 − μv0)2

]

− ρPm0(1 + u0)
m0−1(1 + v0)

n0 μ

(1 − μv0)4

×
{

1 − χ0

1 − μv0
[1 + 2v0 + μv0(5 + 4v0)] + (1 + v0)κ0

}
, and (B.44)

l2,P = χ1(1 + u0)
m0(1 + v0)

n0 λκ1

1 − μv0

(
u0 − μv0

1 − μv0

)

− ρP (1 + u0)
m0+1(1 + v0)

n0+1(1 − χ0)
λμ

(1 − μv0)2

− ρPn0(1 + u0)
m0(1 + v0)

n0(1 − χ0)
λ

1 − μv0

(
u0 − μv0

1 − μv0

)

+ ρPμm0(1 + u0)
m0−1(1 + v0)

n0+1(1 − χ0)
1

(1 − μv0)3

×
[
−2 − 2λ

(
u0 − μv0

1 − μv0

)
+ 3

1 − μv0
+ κ0 + κ1

]
. (B.45)
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