95 research outputs found
Liver function maximum capacity test during normothermic regional perfusion predicts graft function after transplantation
Purpose: In an effort to reduce waitlist mortality, extended criteria donor organs, including those from donation after circulatory death (DCD), are being used with increasing frequency. These donors carry an increased risk for postoperative complications, and balancing donor-recipient risks is currently based on generalized nomograms. Abdominal normothermic regional perfusion (aNRP) enables individual evaluation of DCD organs, but a gold standard to determine suitability for transplantation is lacking. This study aimed to incorporate individualized and predictive measurements of the liver maximum capacity (LiMAx) test to objectively grade liver function during aNRP and prevent post-op complications. Methods: aNRP was performed to salvage 18 DCD liver grafts, otherwise discarded. Continuous variables were presented as the median with the interquartile range. Results: The liver function maximum capacity (LiMAx) test was successfully performed within the aNRP circuit in 17 aNRPs (94%). Donor livers with good lactate clearance during aNRP demonstrated significantly higher LiMAx scores (396 (301–451) µg/kg/h versus those who did not 105 (70–158) µg/kg/h; P = 0.006). This was also true for manifesting stress hyperglycemia > 20 mmol/l (P = 0.032). LiMAx score correlated with alanine aminotransferase (ALT; R = − 0.755) and aspartate transaminase (AST; R = − 0.800) levels during perfusion and distinguished livers that were selected for transplantation (397 (346–453) µg/kg/h) from those who were discarded (155 (87–206) µg/kg/h; P < 0.001). Twelve livers were accepted for transplantation, blinded for LiMAx results, and all had LiMAx scores of > 241 µg/kg/h. Postoperatively, LiMAx during aNRP displayed correlation with 24-h lactate levels. Conclusions: This study shows for the first time the feasibility to assess liver function during aNRP in individual donor livers. LiMAx presents an objective tool to predict donor liver function and risk of complications in the recipient, thus enabling individualized matching of donor livers for an individual recipient. The LiMAx test may present a valuable test for the prediction of donor liver function, preventing post-transplant complication, and personalizing the selection of donor livers for individual recipients.</p
Chemical Proteomic Analysis of Serine Hydrolase Activity in Niemann-Pick Type C Mouse Brain
The endocannabinoid system (ECS) is considered to be an endogenous protective system in various neurodegenerative diseases. Niemann-Pick type C (NPC) is a neurodegenerative disease in which the role of the ECS has not been studied yet. Most of the endocannabinoid enzymes are serine hydrolases, which can be studied using activity-based protein profiling (ABPP). Here, we report the serine hydrolase activity in brain proteomes of a NPC mouse model as measured by ABPP. Two ABPP methods are used: a gel-based method and a chemical proteomics method. The activities of the following endocannabinoid enzymes were quantified: diacylglycerol lipase (DAGL) α, α/β-hydrolase domain-containing protein 4, α/β-hydrolase domain-containing protein 6, α/β-hydrolase domain-containing protein 12, fatty acid amide hydrolase, and monoacylglycerol lipase. Using the gel-based method, two bands were observed for DAGL α. Only the upper band corresponding to this enzyme was significantly decreased in the NPC mouse model. Chemical proteomics showed that three lysosomal serine hydrolase activities (retinoid-inducible serine carboxypeptidase, cathepsin A, and palmitoyl-protein thioesterase 1) were increased in Niemann-Pick C1 protein knockout mouse brain compared to wild-type brain, whereas no difference in endocannabinoid hydrolase activity was observed. We conclude that these targets might be interesting therapeutic targets for future validation studies
Towards broad spectrum activity-based glycosidase probes: synthesis and evaluation of deoxygenated cyclophellitol aziridines
Activity-based protein profiling has emerged as a powerful tool for visualizing glycosidases in complex biological samples. Several configurational cyclophellitol isomers have been shown to display high selectivity as probes for glycosidases processing substrates featuring the same configuration. Here, a set of deoxygenated cyclophellitols are presented which enable inter-class profiling of [small beta]-glucosidases and [small beta]-galactosidases
The novel beta 2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells
Bio-organic Synthesi
Beyond factor analysis: Multidimensionality and the Parkinson’s Disease Sleep Scale-Revised
Many studies have sought to describe the relationship between sleep disturbance and cognition in Parkinson’s disease (PD). The Parkinson’s Disease Sleep Scale (PDSS) and its variants (the Parkinson’s disease Sleep Scale-Revised; PDSS-R, and the Parkinson’s Disease Sleep Scale-2; PDSS-2) quantify a range of symptoms impacting sleep in only 15 items. However, data from these scales may be problematic as included items have considerable conceptual breadth, and there may be overlap in the constructs assessed. Multidimensional measurement models, accounting for the tendency for items to measure multiple constructs, may be useful more accurately to model variance than traditional confirmatory factor analysis. In the present study, we tested the hypothesis that a multidimensional model (a bifactor model) is more appropriate than traditional factor analysis for data generated by these types of scales, using data collected using the PDSS-R as an exemplar. 166 participants diagnosed with idiopathic PD participated in this study. Using PDSS-R data, we compared three models: a unidimensional model; a 3-factor model consisting of sub-factors measuring insomnia, motor symptoms and obstructive sleep apnoea (OSA) and REM sleep behaviour disorder (RBD) symptoms; and, a confirmatory bifactor model with both a general factor and the same three sub-factors. Only the confirmatory bifactor model achieved satisfactory model fit, suggesting that PDSS-R data are multidimensional. There were differential associations between factor scores and patient characteristics, suggesting that some PDSS-R items, but not others, are influenced by mood and personality in addition to sleep symptoms. Multidimensional measurement models may also be a helpful tool in the PDSS and the PDSS-2 scales and may improve the sensitivity of these instruments
PRAISE: providing a roadmap for automated infection surveillance in Europe
Introduction: Healthcare-associated infections (HAI) are among the most common adverse events of medical care. Surveillance of HAI is a key component of successful infection prevention programmes. Conventional surveillance - manual chart review - is resource intensive and limited by concerns regarding interrater reliability. This has led to the development and use of automated surveillance (AS). Many AS systems are the product of in-house development efforts and heterogeneous in their design and methods. With this roadmap, the PRAISE network aims to provide guidance on how to move AS from the research setting to large-scale implementation, and how to ensure the delivery of surveillance data that are uniform and useful for improvement of quality of care. Methods: The PRAISE network brings together 30 experts from ten European countries. This roadmap is based on the outcome of two workshops, teleconference meetings and review by an independent panel of international experts. Results: This roadmap focuses on the surveillance of HAI within networks of healthcare facilities for the purpose of comparison, prevention and quality improvement initiatives. The roadmap does the following: discusses the selection of surveillance targets, different organizational and methodologic approaches and their advantages, disadvantages and risks; defines key performance requirements of AS systems and suggestions for their design; provides guidance on successful implementation and maintenance; and discusses areas of future research and training requirements for the infection prevention and related disciplines. The roadmap is supported by accompanying documents regarding the governance and information technology aspects of implementing AS. Conclusions: Large-scale implementation of AS requires guidance and coordination within and across surveillance networks. Transitions to large-scale AS entail redevelopment of surveillance methods and their interpretation, intensive dialogue with stakeholders and the investment of considerable resources. This roadmap can be used to guide future steps towards implementation, including designing solutions for AS and practical guidance checklists
New materials and devices for preventing catheter-related infections
Catheters are the leading source of bloodstream infections for patients in the intensive care unit (ICU). Comprehensive unit-based programs have proven to be effective in decreasing catheter-related bloodstream infections (CR-BSIs). ICU rates of CR-BSI higher than 2 per 1,000 catheter-days are no longer acceptable. The locally adapted list of preventive measures should include skin antisepsis with an alcoholic preparation, maximal barrier precautions, a strict catheter maintenance policy, and removal of unnecessary catheters. The development of new technologies capable of further decreasing the now low CR-BSI rate is a major challenge. Recently, new materials that decrease the risk of skin-to-vein bacterial migration, such as new antiseptic dressings, were extensively tested. Antimicrobial-coated catheters can prevent CR-BSI but have a theoretical risk of selecting resistant bacteria. An antimicrobial or antiseptic lock may prevent bacterial migration from the hub to the bloodstream. This review discusses the available knowledge about these new technologies
Identifying subtypes of patients with neovascular age-related macular degeneration by genotypic and cardiovascular risk characteristics
<p>Abstract</p> <p>Background</p> <p>One of the challenges in the interpretation of studies showing associations between environmental and genotypic data with disease outcomes such as neovascular age-related macular degeneration (AMD) is understanding the phenotypic heterogeneity within a patient population with regard to any risk factor associated with the condition. This is critical when considering the potential therapeutic response of patients to any drug developed to treat the condition. In the present study, we identify patient subtypes or clusters which could represent several different targets for treatment development, based on genetic pathways in AMD and cardiovascular pathology.</p> <p>Methods</p> <p>We identified a sample of patients with neovascular AMD, that in previous studies had been shown to be at elevated risk for the disease through environmental factors such as cigarette smoking and genetic variants including the complement factor H gene (<it>CFH</it>) on chromosome 1q25 and variants in the <it>ARMS2</it>/HtrA serine peptidase 1 (<it>HTRA1</it>) gene(s) on chromosome 10q26. We conducted a multivariate segmentation analysis of 253 of these patients utilizing available epidemiologic and genetic data.</p> <p>Results</p> <p>In a multivariate model, cigarette smoking failed to differentiate subtypes of patients. However, four meaningfully distinct clusters of patients were identified that were most strongly differentiated by their cardiovascular health status (histories of hypercholesterolemia and hypertension), and the alleles of <it>ARMS2</it>/<it>HTRA1 </it>rs1049331.</p> <p>Conclusions</p> <p>These results have significant personalized medicine implications for drug developers attempting to determine the effective size of the treatable neovascular AMD population. Patient subtypes or clusters may represent different targets for therapeutic development based on genetic pathways in AMD and cardiovascular pathology, and treatments developed that may elevate CV risk, may be ill advised for certain of the clusters identified.</p
Lithium suppression of tau induces brain iron accumulation and neurodegeneration
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients
Colonic Biopsies to Assess the Neuropathology of Parkinson's Disease and Its Relationship with Symptoms
The presence of Lewy bodies and Lewy neurites (LN) has been demonstrated in the enteric nervous system (ENS) of Parkinson's disease (PD) patients. The aims of the present research were to use routine colonoscopy biopsies (1) to analyze, in depth, enteric pathology throughout the colonic submucosal plexus (SMP), and (2) to correlate the pathological burden with neurological and gastrointestinal (GI) symptoms.A total of 10 control and 29 PD patients divided into 3 groups according to disease duration were included. PD and GI symptoms were assessed using the Unified Parkinson's Disease Rating Scale part III and the Rome III questionnaire, respectively. Four biopsies were taken from the ascending and descending colon during the course of a total colonoscopy. Immunohistochemical analysis was performed using antibodies against phosphorylated alpha-synuclein, neurofilaments NF 220 kDa (NF) and tyrosine hydroxylase (TH). The density of LN, labeled by anti-phosphorylated alpha-synuclein antibodies, was evaluated using a quantitative rating score. Lewy pathology was apparent in the colonic biopsies from 21 patients and in none of the controls. A decreased number of NF-immunoreactive neurons per ganglion was observed in the SMP of PD patients compared to controls. The amount of LN in the ENS was inversely correlated with neuronal count and positively correlated with levodopa-unresponsive features and constipation.Analysis of the ENS by routine colonoscopy biopsies is a useful tool for pre-mortem neuropathological diagnosis of PD, and also provides insight into the progression of motor and non-motor symptoms
- …